Skip to main content

Regulatory Mechanisms in Spheroidal Aggregates of Normal and Cancerous Cells

  • Chapter
Spheroids in Cancer Research

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 95))

Abstract

Threedimensional culture systems, pioneered with the development by Moscona (1961) of the technology to culture embryonic cells in reaggregate structures and by Sutherland and his collaborators (Sutherland et al. 1971; Sutherland and Durand 1976) of the methodology to initiate and grow tumor spheroids, have become powerful models for the investigation of problems related to tumor and normal cell biology. The rationale behind the two approaches was the same: by allowing discrete cells in vitro to reconstitute tissue-like structure with optimal cell-to-cell contacts, it was thought possible to recreate a physiological cellular microenvironment and favor in vivo-like growth or development. This postulate was found to be correct. On the one hand, tumor spheroids were indeed found, similarly to in situ tumors, to develop discrete cell populations which differ in their biological properties due to the concentration gradients of metabolites and catabolites existing in these tridimensional structures. On the other hand, normal cells maintained in spheroidal aggregates were shown to be capable of continuing their differentiation/development along normal in vivo pathways and of maitaining differentiated functions. This suggested that both the cell-cell recognition and intercellular adhesion processes involved in the initial aggregation of the cells and the factors controlling the further development of the spheroids were representative of the control mechanisms operating in vivo, including those that are defective in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angello JC, Hosick HL (1982) Glycosaminoglycan synthesis by mammary tumor spheroids. Biochem Biophys Res Commun 107: 1130–1137

    Article  PubMed  CAS  Google Scholar 

  • Bell GI (1981) Estimate of the sticking probability for cells in uniform shear flow with adhesion caused by specific bonds. Cell Biophys 3: 289–304

    Article  PubMed  CAS  Google Scholar 

  • Bertolotti, R, Rutishauser U, Edelman GM (1980) A cell surface molecule involved in aggregation of embryonic liver cells. Proc Natl Acad Sci USA 77: 4831–4835

    Article  PubMed  CAS  Google Scholar 

  • Brackenbury, R, Thiery JP, Rutishauser U, Edelman GM (1977) Adhesion among neural cells of the chick embryo. 1. An immunological assay for molecules involved in cell-cell binding. J Biol Chem 252: 6835–6840

    Google Scholar 

  • Burton AC (1966) Rate of growth of solid tumors as a problem of diffusion. Growth 30: 157–176

    PubMed  CAS  Google Scholar 

  • Carlsson J (1977) A proliferation gradient in three-dimensional colonies of cultured human glioma cells. Int J Cancer 20: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Cassel D, Wood PM, Bunge RP, Glaser L (1982) Mitogenicity of brain axolemma membranes and soluble factors for dorsal root ganglion Schwann cells. J Cell Biochem 18: 433

    Article  PubMed  CAS  Google Scholar 

  • Cassiman JJ, Bernfield MR (1975) Transformation-induced alterations in fibroblast adhesion: masking by trypsin treatment. Exp Cell Res 91: 31–35

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15: 1–89

    Article  Google Scholar 

  • Chow I, Poo MM (1982) Redistribution of cell surface receptors induced by cell-cell contact. J Cell Biol 95: 510–518

    Article  PubMed  CAS  Google Scholar 

  • Conger AD, Ziskin MC (1983) Growth of mammalian tumor spheroids. Cancer Res 43: 556–560

    PubMed  CAS  Google Scholar 

  • DeLong GR (1970) Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures. Dev Biol 22: 563–583

    Article  PubMed  CAS  Google Scholar 

  • DeLong GR, Sidman RL (1970) Alignment defect of reaggregating cells in cultures of developing brains of reeler mutant mice. Dev Biol 22: 584–600

    Article  Google Scholar 

  • Dembitzer HM, Herz F, Schermer A, Wolley RC, Koss LG (1980) Desmosome development in an in vitro model. J Cell Biol 85: 695–702

    Article  PubMed  CAS  Google Scholar 

  • Deschenes J, Valet JP, Marceau N (1980) Hepatocytes from newborn and weanling rats in monolayer culture: isolation by perfusion, fibronectin-mediated adhesion, spreading, and functional activities. In Vitro 16: 722–730

    Google Scholar 

  • Durand RE (1976) Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet 9: 403–412

    PubMed  CAS  Google Scholar 

  • Durand RE, Sutherland RM (1975) Intercellular contact: its influence on the Dq of mammalian cell survival curves. L. H. Gray Conf 6: 237–247

    Google Scholar 

  • Edelman GM (1983) Cell adhesion molecules. Science 219: 4540 - 457

    Article  Google Scholar 

  • Edelman GM, Chuong CM (1982) Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci USA 79: 7036–7040

    Article  PubMed  CAS  Google Scholar 

  • Edwards JG, Dysart JMK, Edgar DH, Robson RT (1979) On the reduced intercellular adhesiveness of virally transformed BHK21 cells. J Cell Sci 35: 307–320

    PubMed  CAS  Google Scholar 

  • Elvin P, Evans CW (1982) The adhesiveness of normal and SV40-transformed BALB/c3T3 cells: effects of culture density and shear rate. Eur J Cancer Clin Oncol 18: 669–675

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Greenspan HP (1975) Influence of geometry on control of cell growth. Biochim Biophys Acta 417: 211–236

    PubMed  CAS  Google Scholar 

  • Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138: 745–753

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273: 345–349

    Article  PubMed  CAS  Google Scholar 

  • Freyer JP, Sutherland RM (1980) Selective dissociation and characterization of cells from different regions of multicell tumor spheroids. Cancer Res 40: 3956–3965

    PubMed  CAS  Google Scholar 

  • Gallin WJ, Edelman GM, Cunningham BA (1983) Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. Proc Natl Acad Sci USA 80: 1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Garrod DR, Nicol A (1981) Cell behaviour and molecular mechanisms of cell-cell adhesion. Biol Rev 56: 199–242

    Article  PubMed  CAS  Google Scholar 

  • Glaser L (1982) Cell recognition: phenomena in search of molecules. In: Frazier WA (ed) Cellular recognition. Liss, New York, pp 759–767

    Google Scholar 

  • Greenspan HP (1972) Models for the growth of a solid tumor by diffusion. Stud Appl Math 51: 317–340

    Google Scholar 

  • Grover A, Oshima RG, Adamson ED (1983a) Epithelial layer formation in differentiating aggregates of F9 embryonal carcinoma cells. J Cell Biol 96: 1690–1696

    Article  PubMed  CAS  Google Scholar 

  • Grover A, Andrews G, Adamson ED (1983b) Role of laminin in epithelium formation by F9 aggregates. J Cell Biol 97: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Guguen-Guillouzo C, Clement B, Baffet G, Beaumont C, Morel-Chany E, Glaise D, Guillouzo A (1983) Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp Cell Res 143: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Haji-Karim M, Carlsson J (1978) Proliferation and viability in cellular spheroids of human origin. Cancer Res 38: 1457–1464

    PubMed  CAS  Google Scholar 

  • Harrison FL, Chesterton CJ (1980) Factors mediating cell-cell recognition and adhesion. Galaptins, a recently discovered class of bridging molecules. FEBS Lett 122: 157–165

    Google Scholar 

  • Hausman RE, Moscona AA (1979) Immunologic detection of retina cognin on the surface of embryonic cells. Exp Cell Res 119: 191–204

    Article  PubMed  CAS  Google Scholar 

  • Honegger P, Richelson E (1977) Biochemical differentiation in aggregating cell cultures of different fetal brain regions. Brain Res 133: 329–339

    Article  PubMed  CAS  Google Scholar 

  • Inch WR, McCredie JA, Sutherland RM (1970) Growth of nodular carcinomas in rodents compared with multi-cell spheroids in tissue culture. Growth 34: 271

    PubMed  CAS  Google Scholar 

  • Kowalczynska HM, Nowak M (1980) L5222 cell-substratum interaction: thermal motion of adhering cells and detachment by shearing force. Stud Biophys 80: 121–131

    Google Scholar 

  • Landry J, Freyer JP, Sutherland RM (1981) Shedding of mitotic cells from the surface of multicell spheroids during growth. J Cell Physiol 106: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Freyer JP, Sutherland RM (1982) A model for the growth of multicellular spheroids. Cell Tissue Kinet 15: 585–594

    PubMed  CAS  Google Scholar 

  • Landry J, Bernier D, Ouellet C (1984) In vitro formation of tissue-like structures and long-term maintenance of liver cell functional activity in spheroid culture ( Abstr ). Strahlenther Onkol 160: 60–61

    Google Scholar 

  • Lieberman A, Keller-McGandry CE, Woolsey TA, Glaser L (1982) Binding of isolated 3T3 surface membranes to growing 3T3 cells and their effect on cell growth. J Cell Biochem 20: 81–93

    Article  PubMed  CAS  Google Scholar 

  • Lissitzky S, Fayet G, Geraud A, Verrier B, Torresani J (1971) Thyrotropin-induced aggregation and reorganization into follicles of isolated porcine-thyroid cells. 1. Mechanism of action of thyrotropin and metabolic properties. Eur J Biochem 24: 88–99

    Google Scholar 

  • Malan-Shibley L, Iype PT (1981) The influence of culture conditions on cell morphology and tyrosine aminotransferase levels in rat liver epithelial cell lines. Exp Cell Res 131: 363–371

    Article  PubMed  CAS  Google Scholar 

  • Marceau N, Robert A, Mailhot D (1977) The major surface protein of epithelial cells from newborn and adult rat livers in primary cultures. Biochem Biophys Res Commun 75: 1092–1097

    Article  PubMed  CAS  Google Scholar 

  • Marchase RB, Vosbeck K, Roth S (1976) Intercellular adhesive specificity. Biochim Biophys Acta 457: 385–416

    PubMed  CAS  Google Scholar 

  • Matthieu JM, Honegger P, Favrod P, Poduslo JB, Krstic R (1981) Aggregating brain cell cultures: a model to study brain development. In: Monset-Couchard M, Minkowski A (eds) Physiological and biochemical basis for perinatal medicine. Karger, Basel, pp 359–366

    Google Scholar 

  • McElwain DLS, Ponzo PJ (1977) A model for the growth of a solid tumor with non-uniform oxygen consumption. Math Biosci 35: 267–279

    Article  Google Scholar 

  • Middelkoop OP, Ross E, Van de Pavert IV (1982) Infiltration of lymphosarcoma cells into hepatocyte cultures: inhibition by univalent antibodies against liver plasma membranes and lymphosarcoma cells. J Cell Sci 56: 461–470

    CAS  Google Scholar 

  • Moscona AA (1961) Rotation-mediated histogenic aggregation of dissociated cells. Exp Cell Res 22: 455–475

    Article  PubMed  CAS  Google Scholar 

  • Nederman T, Norling B, Glimelius B, Carlsson J, Brunk U (1984) The extracellular matrix of two human tumor spheroids ( Abstr ). Strahlenther Onkol 160: 53

    Google Scholar 

  • Nielsen LD, Pitts M, Grady SR, McGuire EJ (1981) Cell-cell adhesion in the embryonic chick: partial purification of liver adhesion molecules from liver membranes. Dev Biol 86: 315–326

    Article  PubMed  CAS  Google Scholar 

  • Ocklind C, Obrink B (1982) Intercellular adhesion of rat hepatocytes. Identification of a cell surface glycoprotein involved in the initial adhesion process. J Biol Chem 257: 6788–6795

    Google Scholar 

  • Ono J, Takaki R, Okano H, Fukuma M (1979) Long-term culture of pancreatic islet cells with special reference of the B-cell function. In Vitro 15: 95–102

    Google Scholar 

  • Peterson SW, Lerch V (1983) Inhibition of DNA synthesis in SV3T3 cultures by isolated 3T3 plasma membranes. J Cell Biol 97: 276–279

    Article  PubMed  CAS  Google Scholar 

  • Phillips HM, Steinberg MS (1969) Equilibrium measurements of embryonic chick cell adhesiveness: 1. Shape equilibrium in centrifugal fields. Proc Natl Acad Sci USA 64: 121–127

    Google Scholar 

  • Reid LCM (1982) Regulation of growth and differentiation of mammalian cells by hormones and extracellular matrix. In: Ahmad F (ed) From gene to protein: translation into biotechnology. Academic, New York, pp 53–73

    Google Scholar 

  • Reddi AH (1974) Bone matrix in the solid state: geometric influence an differentiation of fibroblasts. In: Lawrence JH, Gofman JW (eds) Advances in biological and medical physics, vol 15. Academic, New York, pp 1–18

    Google Scholar 

  • Rojkind M, Gatmaitan Z, Mackensen S, Giambrone MA, Ponce P, Reid LM (1980) Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J Cell Biol 87: 255–263

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Lipsky PE (1981) Macrophage-lymphocyte cooperation in human immune responses. In: Dingle JT, Gordon JL (eds) Cellular interactions. Elsevier/North-Holland, Amsterdam New York Oxford, pp 81–97

    Google Scholar 

  • Rosenstraus MJ, Spadoro JP, Nilsson J (1983) Cell position regulates endodermal differentiation in embryonal carcinoma cell aggregates. Dev Biol 98: 110–117

    Article  PubMed  CAS  Google Scholar 

  • Sadoul R, Hirn M, Deagostini-Bazin H, Rougon G, Goridis C (1983) Adult and embryonic mouse neural cell adhesion molecules have different binding properties. Nature 304: 347–349

    Article  PubMed  CAS  Google Scholar 

  • Sawyer RH, Fallon JB (eds) (1983) Epithelial-mesenchymal interactions in development. Praeger, New York

    Google Scholar 

  • Schueren van der B, Denef C, Cassiman JJ (1982) Ultrastructural and functional characteristics of rat pituitary cell aggregates. Endocrinology 110: 513–523

    Article  PubMed  Google Scholar 

  • Seeds NW (1973) Differentiation of aggregating brain cell cultures. In: Sato G (ed) Tissue culture of the nervous system. Plenum, New York, pp 35–53

    Google Scholar 

  • Sewchand LS, Rowlands S, Lovlin RE (1982) Resistance to the Brownian movement of red blood ells in flat horizontal surfaces. Cell Biophys 4: 41–46

    PubMed  CAS  Google Scholar 

  • Shymko RM, Glass L (1976) Cellular and geometric control of tissue growth and mitotic instability. J Theor Biol 63: 355–374

    Article  PubMed  CAS  Google Scholar 

  • Smoluchowski von M (1917) Investigation into a mathematical theory of the kinetics of coagulation of colloidal solutions. Phys Chem 92: 129–168

    Google Scholar 

  • Steinberg MS (1963) Reconstruction of tissues by dissociated cells. Science 141: 401–407

    Article  PubMed  CAS  Google Scholar 

  • Sutherland RM, Durand RE (1976) Radiation response of multicell spheroids. An in vitro tumour model. Curr Top Radiat Res Q 11: 87–139

    Google Scholar 

  • Sutherland RM, McCredie JA, Inch WR (1971) Growth of multicell spheroids in tissue culture as a model of modular carcinomas. J Natl Cancer Inst 46: 113–120

    PubMed  CAS  Google Scholar 

  • Swift DL, Friedlander SK (1964) The coagulation of hydrosols by Brownian motion and laminar shear flow. J Colloid Sci 19: 621–647

    Article  Google Scholar 

  • Takeichi M (1977) Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol 75: 464–474

    Article  PubMed  CAS  Google Scholar 

  • Thomas WA, Edelman BA, Lobel SM, Breitbard AS, Steinberg MS (1981) Two chick embryonic adhesion systems: molecular vs tissue specificity. J Supramol Struct Cell Biochem 16: 15–27

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD, Honegger P, Richelson E, Webster H de F (1979) Morphological differentiation of mechanically dissociated fetal rat brain in aggregating cell cultures. Brain Res 150: 117–130

    Google Scholar 

  • Umbreit J, Roseman S (1975) A requirement for reversible binding between aggregating embryonic cells before adhesion. J Biol Chem 250: 9360–9368

    PubMed  CAS  Google Scholar 

  • Urushihara H, Takeichi M (1980) Cell-cell adhesion molecules: identification of a glycoprotein relevant to the Ca2+-independent aggregation of Chinese hamster fibroblasts. Cell 20: 363–371

    Article  PubMed  CAS  Google Scholar 

  • Wicha MS, Lowrie G, Kohn E, Bagavandoss P, Mahn T (1982) Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc Natl Acad Sci USA 79: 3213–3217

    Article  PubMed  CAS  Google Scholar 

  • Wright TC, Underhill CB, Toole BP, Karnovsky MJ (1981) Divalent cation-independent aggregation of rat-1 fibroblasts infected with a temperature-sensitive mutant of rous sarcoma virus. Cancer Res 41: 5107–5113

    PubMed  CAS  Google Scholar 

  • Yoshida C, Takeichi M (1982) Teratocarcinoma cell adhesion: identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell 28: 217–224

    Article  PubMed  CAS  Google Scholar 

  • Yuhas JM, Li AP (1978) Growth fraction as the major determinant of multicellular tumor spheroid growth rates. Cancer Res 38: 1528–1532

    PubMed  CAS  Google Scholar 

  • Yuhas JM, Tarleton AE, Molzen KB (1978) Multicellular tumor spheroid formation by breast cancer cells isolated from different sites. Cancer Res 38: 2486–2491

    PubMed  CAS  Google Scholar 

  • Zenzes MT, Engel W (1981a) The capacity of ovarian cells of the postnatal rat to reorganize into histiotypic structures. Differentiation 19: 199–202

    Article  PubMed  CAS  Google Scholar 

  • Zenzes MT, Engel W (1981b) The capacity of testicular cells of the postnatal rat to reorganize into histotypic structures. Differentiation 20: 157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Landry, J., Freyer, J.P. (1984). Regulatory Mechanisms in Spheroidal Aggregates of Normal and Cancerous Cells. In: Acker, H., Carlsson, J., Durand, R., Sutherland, R.M. (eds) Spheroids in Cancer Research. Recent Results in Cancer Research, vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82340-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82340-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82342-8

  • Online ISBN: 978-3-642-82340-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics