Skip to main content

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 7))

  • 130 Accesses

Abstract

Solutions of the biharmonic equation governing steady two dimensional viscous flow of an incompressible Newtonian fluid are obtained by employing a direct biharmonic boundary integral equation (BBIE) method in which Green’s Theorem is used to reformulate the differential equation as a pair of coupled integral equations which are applied only on the boundary of the solution domain.

An iterative modification of the classical BBIE is presented which is able to solve a large class of (nonlinear) viscous free surface flows for a wide range of surface tensions. The method requires a knowledge of the asymptotic behaviour of the free surface profile in the limiting case of infinite surface tension but this can usually be obtained from a perturbation analysis. Unlike space discretisation techniques such as finite difference or finite element, the BBIE evaluates only boundary information on each iteration. Once the solution is evaluated on the boundary the solution at interior points can easily be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. YEUNG, Numerical methods in free surface flows, Ann. Rev Fluid Mech., 14, pp.395 – 442, 1982.

    Article  MathSciNet  Google Scholar 

  2. C.W. MILLER, Numerical solution of 2-D potential theory problems using integral equation techniques, Ph.D thesis, University of Iowa, 1979.

    Google Scholar 

  3. J.A. LIGGETT, Location of free surface in porous media, Trans. ASCE J. Hyd. Div., 104, NO.HY4, pp.353 – 365, 1977.

    Google Scholar 

  4. Y. NIWA, S. KOBAYASHI and T. FUKUI, An application of the integral equation method to seepage problems, Proc. 24th Jap. Nat. Conf. for Appl. Mech., pp.470 – 486, 1974.

    Google Scholar 

  5. M.S. LONGUET-HIGGINS and E.D. COKELET, The deformation of steep surface waves on water. Part 1: a numerical method of computation, Proc. R. Soc. Lond., A350, pp.1 – 26, 1976.

    MathSciNet  Google Scholar 

  6. W.J. SILLIMAN, Viscous film flows with contact lines: finite element simulation, a basis for stability assessment and design optimisation, Ph.D thesis, University of Minnesota, 1979.

    Google Scholar 

  7. K.J. RUSCHAK, A method for incorporating free boundaries with surface tension in finite element fluid flow simulators, Int. J. Num. Meth. in Engng., 15, pp.639 – 648, 1980.

    Article  MATH  Google Scholar 

  8. C.S. FREDERIKSEN and A.M. WATTS, Finite element methods for time dependent incompressible free surface flow, J. Coraput. Phys., 39, pp.282 – 304, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. SAITO and L.E. SCRIVEN, Study of coating flow by the finite element method, J. Comput. Phys., 42(1), pp.53 – 76, 1981.

    Article  MATH  Google Scholar 

  10. S. RICHARDSON, A ‘stick - slip’ problem related to the motion of a free jet at low Reynolds numbers, Proc. Camb. Phil. Soc, 67, pp.477 – 489, 1970.

    Article  MATH  Google Scholar 

  11. W.E. LANGLOIS, Slow Viscous Flow, MacMillan, New York, 1964.

    Google Scholar 

  12. M.R. SPIEGEL, Vector Analysis, McGraw - Hill, London, 1974.

    Google Scholar 

  13. J.C. COYNE and H.G. ELROD Jr., Conditions for the rupture of a lubricating film, Trans. ASME J. Lub. Tech., 92, pp.451 – 456, 1970.

    Article  Google Scholar 

  14. G.T. SYMM, Treatment of singularities in the solution of Laplace’s equation by an integral equation method, National Physics Laboratory Report No. NAC31, 1973.

    Google Scholar 

  15. M. MAITI and S.K. CHAKRABARTY, Integral equation solution for simply — supported polygonal plates, Int J. Engng. Sci., 12, pp.793 – 806, 1974.

    Article  MATH  Google Scholar 

  16. KELMANSON, M.A., An integral equation method for the solution of singular slow flow problems, J. Comput. Phys., Vol.51(l), pp. 139–158, 1983

    Article  MATH  Google Scholar 

  17. D.H. MICHAEL, The separation of viscous liquid at a straight edge, Mathematika, 5, pp.82 – 84, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  18. H.K. MOFFATT, Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18(1), pp.1 – 18, 1964.

    Article  MATH  Google Scholar 

  19. T.W. PATTEN and B.A. FINLAYSON, Finite element method for newtonian and viscoelastic fluids, in Fund. Research in Fluid Mech., AIChE 70th Annual Meeting, New York, 1977.

    Google Scholar 

  20. K.J. RUSCHAK, Boundary conditions at a liquid — air interface in lubricating flows, J. Fluid Mech., 119, pp.107 – 120, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  21. S.D.R. WILSON, The drag — out problem in film coating theory, J. Eng. Math., 16, pp.209 – 221, 1982.

    Article  MATH  Google Scholar 

  22. S. THARMALINGHAM and W.L. WILKINSON, The coating of newtonian fluids onto a rotating roll, Chem. Eng. Sci., 33 pp.1481 – 1487, 1978.

    Article  Google Scholar 

  23. S. THARMALINGHAM and W.L. WILKINSON, The coating of newtonian liquids onto a rotating roll at low speeds, Polymer Eng. Sci., 18(15), pp.1481 – 1487, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Ingham, D.B., Kelmanson, M.A. (1984). Boundary Integral Equation Solution of Viscous Flows with Free Surfaces. In: Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems. Lecture Notes in Engineering, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82330-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82330-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13646-0

  • Online ISBN: 978-3-642-82330-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics