Skip to main content

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 7))

  • 126 Accesses

Abstract

Solutions of the biharmonic equation governing steady two dimensional viscous flow of an incompressible newtonian fluid are obtained by employing a direct biharmonic boundary integral equation (BBIE) method in which Green’s Theorem is used to reformulate the differential equation as a pair of coupled integral equations.

The classical BBIE gives poor convergence in the presence of singularities arising in the solution domain. The rate of convergence is improved dramatically by including the analytic behaviour of the flow in the neighbourhood of the singularities. The modified BBIE (MBBIE) effectively ‘subtracts out’ this analytic behaviour in terms of a series representation whose coefficients are initially unknown. In this way the modified flow variables are regular throughout the entire solution domain.

Also presented is a method for including the asymptotic nature of the flow when the solution domain is unbounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A.JASWON and G.T.SYMM, in Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London (1977).

    MATH  Google Scholar 

  2. C.A.BREBBIA, J.C.F.TELLES and L.C.WROBEL, Boundary Element Techniques: Theory and Applications in Engineering, Springer Verlag, Berlin and New York, 1984.

    MATH  Google Scholar 

  3. S.K.LASKAR, Ph.D Thesis, Solution of Certain Boundary Integral Equations in Potential Theory, University College London (1971).

    Google Scholar 

  4. M.R.SPIEGEL, Vector Analysis, McGraw-Hill, London (1974).

    Google Scholar 

  5. C.W.MILLER, Ph.D Thesis, Numerical Solution of 2-D Potential Theory Problems using Integral Equation Techniques, University of Iowa (1979).

    Google Scholar 

  6. T.BRATANOW, I.SPEHERT and C.A.BREBBIA, 3-D analysis of flows around ship hulls using boundary elements. In Recent Advances in Boundary Element Methods (ed. C.A.Brebbia), Pentech Press, London (1978).

    Google Scholar 

  7. F.J.RIZZO and D.J.SHIPPY, A boundary integral approach to potential and elasticity problems for axisymmetric bodies with arbitrary boundary conditions, Mech. Research Comm., 6(2), 99, (1979).

    Article  MATH  Google Scholar 

  8. C.J.COLEMAN, A contour integral formulation of plane creeping newtonian flow, Q. J. Mech. Appl. Math., 34(4), 453, (1981).

    Article  MATH  Google Scholar 

  9. F.PAN and A.ACRIVOS, Steady flows in rectangular cavities, J. Fluid Mech., 28(4), 643, (1967).

    Article  Google Scholar 

  10. O.BURGGRAF, Analytical and numerical studies on the structure of steady separated flows, J. Fluid Mech., 24(1), 113, (1966).

    Article  Google Scholar 

  11. R.P.GUPTA and M.M.MANOHAR, Boundary approximations and accuracy in viscous flow computations, J. Comput. Phys., 31, 265, (1979).

    Article  MATH  MathSciNet  Google Scholar 

  12. R.P.GUPTA, M.M.MANOHAR and B.NOBLE, Nature of viscous flows near sharp corners, Computers and Fluids, 9(4), 379, (1981).

    Article  MATH  Google Scholar 

  13. D.H.MICHAEL, The separation of viscous liquid at a straight edge, Mathematika, 5, 82, (1958).

    Article  MATH  MathSciNet  Google Scholar 

  14. W.R.DEAN and P.E.MONTAGNON, On the steady motion of viscous liquid in a corner, Proc. Camb. Phil. Soc, 45, 389, (1949).

    Article  MATH  MathSciNet  Google Scholar 

  15. S.D.R.WILSON, The development of Poiseuille flow, J. Fluid Mech., 38(4), 793, (1969).

    Article  MATH  Google Scholar 

  16. A.C.HURD and A.R.PETERS, Analysis of flow separation in a confined 2-D channel, Trans. ASME J. Basic Engng., D92, 908, (1970).

    Article  Google Scholar 

  17. M.VAN DYKE, Entry flow in a channel, J. Fluid Mech., 44(4), 813, (1970).

    Article  MATH  Google Scholar 

  18. S.D.R.WILSON, Entry flow in a channel; Part 2, J. Fluid Mech., 46(4), 787, (1971).

    Article  MATH  Google Scholar 

  19. S.C.R.DENNIS and F.T.SMITH, Steady flow through a channel with a symmetrical constriction in the form of a step, Proc. R. Soc. Lond., A372, 393, (1980).

    MathSciNet  Google Scholar 

  20. H.HOLSTEIN Jr. and D.J.PADDON, A singular finite difference treatment of re-entrant corner flows. Part 1: newtonian fluids, J. Non-newtonian Fluid Mech., 8, 81, (1981).

    Article  MATH  Google Scholar 

  21. J.S.BRAMLEY and S.C.R.DENNIS, The calculation of eigenvalues for the stationary perturbation of Poiseuille flow, J. Comput. Phys., 47(2), 179, (1982).

    Article  MATH  Google Scholar 

  22. M.MAITI and S.K.CHAKRABARTY, Integral equation solution for simply supported polygonal plates, Int. J. Engng. Sci., 12, 793, (1974).

    Article  MATH  Google Scholar 

  23. H.K.MOFFATT, Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18(1), 1, (1964).

    Article  MATH  Google Scholar 

  24. G.D.SMITH, in Numerical Solution of Partial Differential Equations, Finite Difference Methods, Clarendon Press, Oxford (1978).

    MATH  Google Scholar 

  25. D.B.INGHAM and M.A.KELMANSON, Modified integral equation solution of viscous flow in a bifurcating channel. In Proc. 4th Int. Conf. on Boundary Element Methods, Springer-Verlag (1982).

    Google Scholar 

  26. G.T.SYMM, Treatment of singularities in the solution of Laplace’s equation by an integral equation method, National Physics Laboratory Report NAC31, (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Ingham, D.B., Kelmanson, M.A. (1984). Modified Integral Equation Solution of Viscous Flows Near Sharp Corners. In: Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems. Lecture Notes in Engineering, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82330-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82330-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13646-0

  • Online ISBN: 978-3-642-82330-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics