Dynamic Optimisation

  • Magdi S. Mahmoud
  • Madan G. Singh
Part of the Communications and Control Engineering Series book series (CCE)

Abstract

The main task of control engineering design is to ensure that the dynamic system under consideration behaves in some desirable way. In Chapters 4 and 5, we discussed how to design feedback controllers utilizing different schemes. The goal of this chapter is to solve this problem using an alternative technique which is based on optimal control theory [1–6,23].

Keywords

Torque Steam Sewage Expense Summing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kalman, R.E. “Contributions to the Theory of Optimal Control”. Bol. Soc. Mat. Mexicana, vol. 5, pp. 102–119, 1960.MathSciNetGoogle Scholar
  2. [2]
    Kalman, R.E. “When is a Linear Control System Optimal?”. J. Basic Engineering, Trans. ASME, vol. 86, pp. 51–60, 1964.CrossRefGoogle Scholar
  3. [3]
    Bellman, R. and S. Dreyfus “Applied Dynamic Programming”. Princeton University Press, N.J., 1962.Google Scholar
  4. [4]
    White, D.J. “Dynamic Programming”, Holden-Day, Inc., San Francisco, 1969.Google Scholar
  5. [5]
    Bryson, A.E. and Y.C. Ho “Applied Optimal Control”. Hemisphere Publishing Co., N.Y., 1975.Google Scholar
  6. [6]
    Sage, A.P. and C.C. Whitte, “Optimum Systems Control”, Prentice-Hall, N.J., 1977.Google Scholar
  7. [7]
    Bellman, R., R. Kalaba and B. Kotkin “Polynomial Approximation–A New Computational Technique in Dynamic Programming–I, Allocation Processes”. Mathematics of Computation, vol. 17, pp. 155–161, 1963.MATHMathSciNetGoogle Scholar
  8. [8]
    Larson, R.E. “Dynamic Programming with Reduced Computational Requirements”, IEEE Trans. Automatic Control, vol. AC-10, pp. 135–143, 1965.Google Scholar
  9. [9]
    Bryson, A.E. and W.F. Denham “A Steepest Ascent Method for Solving Optimum Programming Problems”. J. Applied Mechanics, vol. 29, pp. 247–257, 1962.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    Breakwell, J.V., J.L. Speyer and A.E. Bryson “Optimization and Control of Nonlinear Systems Using the Second Variation”. SIAM J. Control, vol. 1, pp. 193–223, 1963.MATHGoogle Scholar
  11. [11]
    Bellman, R. and R. Kalaba “Quasilinearization and Nonlinear Boundary-Value Problems”. Elsevier Press, N.Y., 1965.Google Scholar
  12. [12]
    Tabak, D. and B.C. Kuo “Optimal Control by Mathematical Programming”, Prentice-Hall, N.J., 1971.Google Scholar
  13. [13]
    Kwakernaak, H. and R. Sivan “Linear Optimal Control Systems”, Wiley Interscience, N.Y. 1971.Google Scholar
  14. [14]
    Caines, P.E. and D.Q. Mayne “On the Discrete-Time Matrix Equation of Optimal Control”. Int. J. Control, vol. 12, pp. 785–794, 1970.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    Caines, P.E. and D.Q. Mayne “On the Discrete-Time Matrix Equation of Optimal Control–A Correction”. Int. J. Control, vol. 14, pp. 205–207, 1971.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Vaughan, D.R. “A nonrecursive Algebraic Solution for the Discrete Riccati Equation”. IEEE Trans. Automatic Control, vol. AC-15, pp. 597–599, 1970.Google Scholar
  17. [17]
    Franklin, G.F. and J.D. Powell “Digital Control of Dynamic Systems”. Addison-Wesley Publishing Co., Mass., 1980.Google Scholar
  18. [18]
    Gaalman, G.J. “Comments on A Nonrecursive Algebraic Solution for the Discrete Riccati Equation”. IEEE Trans. Automatic Control, vol. AC-25, pp. 610–612, 1980.Google Scholar
  19. [19]
    Michelsen, M.L. “On the Eigenvalue-Eigenvector Method for Solution of the Stationary Discrete Matrix Riccati Equation”, IEEE Trans. Automatic Control, vol. AC-24, pp. 480–481, 1979.Google Scholar
  20. [20]
    Stewart, G.W. “Introduction to Matrix Computations”, Academic Press, N.Y., 1973.MATHGoogle Scholar
  21. [21]
    Pappas, T., A.J. Lamb and N.R. Sandell, Jr. “On the Numerical Solution of the Discrete-Time Algebraic Riccati Equation”. IEEE Trans. Automatic Control, vol. AC-25, pp. 631–641, 1980.Google Scholar
  22. [22]
    Bar-ness, Y. “Solution of the Discrete Infinite-Time, Time-Invariant Regulator by the Euler Equation”. Int. J. Control, vol. 22, pp. 49–56, 1975.CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    Aoki, M. “Optimal Control and System Theory in Dynamic Economic Analysis”. North-Holland, 1976.Google Scholar
  24. [24]
    Payne, H.J. and L.M. Silverman “On the Discrete-Time Algebraic Riccati Equation”. IEEE Trans. Automatic Control, vol. AC-18, pp. 226–234, 1973.Google Scholar
  25. [25]
    Rappaport, D. and L.M. Silverman “Structure and Stability of Discrete-Time Optimal Systems”. IEEE Trans. Automatic Control, vol. AC-16, 659 pp. 227–233, 1971.CrossRefGoogle Scholar
  26. [26]
    Hewer, G.A. “An Iterative Technique for the Computation of the Steady State Gains for the Discrete Optimal Regulator”. IEEE Trans. Automatic Control, vol. AC-16, pp. 382–384, 1971.Google Scholar
  27. [27]
    Kleinman, D.L. “Stabilizing a Discrete, Constant, Linear System with Application to Iterative Methods for Solving the Riccati Equation”. IEEE Trans. Automatic Control, vol. AC-19, pp. 252–254, 1974.Google Scholar
  28. [28]
    Sandell, Jr., N.R. “On Newton’s Method for Riccati Equation Solution”. IEEE Trans. Automatic Control, vol. AC-19, pp. 254–255, 1974.Google Scholar
  29. [29]
    Garbow, B.S., et. al. “Matrix Eigensystem Routines - EISPACK Guide Extension”. Lecture Notes in Computer Science, vol. 51, Springer-Verlag, N.Y., 1977.Google Scholar
  30. [30]
    Laub, A.J. “A Schur Method for Solving Algebraic Riccati Equations”. IEEE Trans. Automat. Control, vol. AC-24, pp. 913–921, 1979.Google Scholar
  31. [31]
    Dahlquist, G. and A. Bjorck “Numerical Methods”. Prentice-Hall, N.J., 1974.Google Scholar
  32. [32]
    Kailath, T. “Redheffer Scattering Theory and Linear State-Space Estimation”. Richerche di Automatica, Special Issue on System Theory and Physics, January 1979.Google Scholar
  33. [33]
    Kailath, T. “Some New Algorithms for Recursive Estimation in Constant Linear Systems”. IEEE Trans. Inform. Thy., vol. IT-19, pp. 750–760, 1973.Google Scholar
  34. [34]
    Morf, M. and T. Kailath “Square-Root Algorithms for Least-Squares Estimation”. IEEE Trans. Automatic Control, vol. AC-20, pp. 487–497, 1975.Google Scholar
  35. [35]
    Silverman, L.M. “Discrete Riccati Equations: Alternative Algorithms, Asymptotic Properties and System Theory Interpretations” in Control and Dynamic Systems, vol. 12 (C.T. Leondes, Ed.), Academic Press, pp. 313–386, 1976.Google Scholar
  36. [36]
    Morf, M., J. Dobbins, B. Friedlander and T. Kailath “Square-Root Algorithms for Parallel Processing in Optimal Estimation”. Automatica, vol. 15, 1979.Google Scholar
  37. [37]
    Morf, M., G.S. Sidhu and T. Kailath “Some New Algorithms for Recursive Estimation in Constant, Linear, Discrete-Time Systems”. IEEE Trans. Automatic Control, vol. AC-19, pp. 315–323, 1974.Google Scholar
  38. [38]
    Kailath, T. “Linear Systems”, Prentice-Hall, N.J., 1980.MATHGoogle Scholar
  39. [39]
    Yasuda, K. and K. Hirai “Upper and Lower Bounds on the Solution of the Algebraic Riccati Equation”. IEEE Trans. Automatic Control, vol. AC-24, pp. 483–487, 1979.Google Scholar
  40. [40]
    Mahmoud, M.S. and M.G. Singh “Large Scale Systems Modelling”. Pergamon Press, Oxford, 1981.MATHGoogle Scholar
  41. [41]
    Singh, M.G. and A. Titli “Systems: Decomposition, Optimization and Control”. Pergamon Press, Oxford, 1978.Google Scholar
  42. [42]
    Pearson, J.D. “Dynamic Optimization Techniques” in Optimization Methods for Large Scale Systems, edited by D.A. Wismer, McGraw-Hill, N.Y., 1971.Google Scholar
  43. [43]
    Geoffrion, A.M. “Duality in Nonlinear Programming”. SIAM Review, vol. 13, pp. 1–37, 1971.CrossRefMATHMathSciNetGoogle Scholar
  44. [44]
    Singh, M.G., M.F. Hassan and A. Titli “Multi-Level Feedback Control for Interconnected Dynamical Systems Using the Prediction Principle”. IEEE Trans. Systems, Man and Cybernetics, vol. SMC-6, pp. 233–239, 1976.Google Scholar
  45. [45]
    Albert, A. “Regression and the Moore-Penrose Pseudo Inverse”. Academic Press, N.Y., 1972.Google Scholar
  46. [46]
    Patnaik, L.M., N. Viswanadham and I.G. Sarma “Computer Control Algorithms for a Tubular Ammonia Reactor”. IEEE Trans. Automatic Control, vol. AC-25, pp. 642–650, 1980.Google Scholar
  47. [47]
    Shackshaft, G. “General-Purpose Turbo-Alternator Model.” Proc. IEE, vol. 110, pp. 703–713, 1963.CrossRefGoogle Scholar
  48. [48]
    Walker, P.A. and O.H. Abdalla “Discrete Control of An A.C. Turbogenerator by Output Feedback”. Proc. IEE, vol. 125, pp. 1031–1038, 1978.CrossRefGoogle Scholar
  49. [49]
    Dyer, P. and S.R. McReynolds “The Computation and Theory of Optimal Control”. Academic Press, N.Y., 1970.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1984

Authors and Affiliations

  • Magdi S. Mahmoud
    • 1
  • Madan G. Singh
    • 2
  1. 1.Electrical and Computer Engineering Dept.Kuwait UniversityKuwait
  2. 2.ManchesterUK

Personalised recommendations