Advertisement

Preparation and Characterization of GaAs Doping Superlattices

  • Klaus Ploog
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 53)

Abstract

The space-charge induced periodic modulation of the energy bands in GaAs doping superlattices grown by molecular beam epitaxy leads to a confinement of electrons and holes in alternate layers (indirect gap in real space). Due to the effective spatial separation the recombination lifetimes of excess carriers are enhanced and large deviations of electron and hole concentrations from thermal equilibrium become quasi-stable. As a result, doping superlattices exhibit unique tunable electronic properties. This fundamental difference from familiar semiconductors is exemplified by results on the tunability of bipolar conductivity and of the two-dimensional subband structure by carrier injection via selective electrodes and by photoexcitation.

Keywords

Doping Concentration Carrier Injection Excess Carrier Recombination Lifetime Subband Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Esaki, R. Tsu: IBM J. Res. Develop. 14, 61 (1970)CrossRefGoogle Scholar
  2. [2]
    R. Dingle: Festkörperprobleme, Vol. XV,Ed. H.J. Queisser ( Vieweg, Braunschweig, 1975 ) p. 21Google Scholar
  3. [3]
    K. Ploog, G.H. Döhler: Adv. Phys. 32, 285 (1983)CrossRefGoogle Scholar
  4. [4]
    S. Brand, R.A. Abram: J. Phys. C167–6111 (1983)Google Scholar
  5. [5]
    K. Ploog: Ann. Rev. Mater. Sci. 11, 171 (1982)CrossRefGoogle Scholar
  6. [6]
    A. Fischer, K. Graf, M. HafendörT r, H. Künzel, K. Ploog: Techn.Mess.tm 49, 403 and 467 (1982)Google Scholar
  7. [7]
    K. Ploog, A. Fischer, H. Künzel: J. Electrochem. Soc. 128, 400 (1981)CrossRefGoogle Scholar
  8. [8]
    K. Ploog, H. Künzel: Microelectron. J. 13, No. 3, p. 5–7982 )Google Scholar
  9. [9]
    H. Künzel, K. Ploog: J. Vac. Sci. TechnöT. B2, 72 (1984)Google Scholar
  10. [10]
    H. Künzel, G.H. Döhler, K. Ploog: Appl. Phy T A 27, 1 (1982)Google Scholar
  11. [11]
    G.H. Döhler, H. Künzel, D. Olego, K. Ploog, P. Ruden, H.J. Stolz, G. Abstreiter: Phys. Rev. Lett. 47, 864 (1981)CrossRefGoogle Scholar
  12. [12]
    C. Zeller, B. Vinter, G. Abstrei1ér, K. Ploog: Phys. Rev. B26, 2124 (1982)CrossRefGoogle Scholar
  13. [13]
    G. Abstreiter: These ProceedingsGoogle Scholar
  14. [14]
    J.C. Maan, T. Englert, C. Uihlein, H. Künzel, K. Ploog, A. Fischer: J. Vac. Sci. Technol. 81, 289 (1983)Google Scholar
  15. [16]
    J.C. Maan: These Proceeö ingsGoogle Scholar
  16. [16]
    H. Künzel, A. Fischer, J. Knecht, K. Ploog: Appl. Phys. A30, 73 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Klaus Ploog
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungFed. Rep. of Germany

Personalised recommendations