Advantages of Multiple Quantum Wells with Abrupt Interfaces for Light-Emitting Devices

  • D. Bimberg
  • J. Christen
  • A. Steckenborn
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 53)


Continuous excitation, time resolved and time delayed cathodo- and photoluminescence experiments prove that radiative recombination from narrow GaAs (and In0.53 Ga0.47 As) quantum wells (QWs) is of excitonic character at temperatures up to room temperature. The radiative recombination rate is strongly enhanced as compared to 3-dimensional material of the same quality and carrier capture by impurities is suppressed. Charge transfer from narrow barriers to wells occurs quasiballistically. The wavelength of emission from QWs is tunable with decreasing well thickness up 1.4–1.5 of the bandgap of the 3D material. All these properties lead to a novel generation of light-emitting devices having properties superior to classical ones. Examples of such devices based on GaAs are given. The importance of interface quality is emphasized in connection with InP based structures, which show much less improvement.


Heavy Hole Threshold Current Density Excitonic Recombination Carrier Capture Radiative Recombination Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Esaki and R. Tsu: IBM J.Res. Dev. 14, 61 (1970)CrossRefGoogle Scholar
  2. 2.
    R. Dingle: Advances in Solid State Physics 15 (ed.: H.J.Queisser ), Pergamon-Vieweg, Braunschweig, 1975, p. 21Google Scholar
  3. 3.
    D.C. Tsui, H.L. Störmer and A.C. Gossard: Phys.Rev.Lett. 48, 1559 (1982)CrossRefGoogle Scholar
  4. 4.
    see the papers by G.Weimann, M.Razeghi, K.Ploog and M.W.Jones in this volumeGoogle Scholar
  5. 5.
    M.Altarelli: this volumeGoogle Scholar
  6. 6.
    M.D. Camras, N. Holonyak Jr., K. Hess, J.J. Coleman, R.D. Burnham and D.R. Scifres: Appl.Phys.Lett. 41, 317 (1982)CrossRefGoogle Scholar
  7. 7.
    D.F. Welch, G.W. Wicks and C.F. Eastman: Appl.Phys.Lett. 43, 762 (1983)CrossRefGoogle Scholar
  8. 8.
    M. Razeghi, J.P. Hirtz, K.O. Ziemelis, C. Delalande, B. Etienne and M. Voos: Appl.Phys.Lett. 43, 762 (1983)CrossRefGoogle Scholar
  9. 9.
    P. Dawson, G. Duggan, H.I. Ralph and K. Woddbridge: Phys.Rev.B 28, 7381 (1983)CrossRefGoogle Scholar
  10. 10.
    J. Christen, D. Bimberg, A. Steckenborn, G. Weimann: Verhandlg. DPG (VI)19, 214 (1984) and to be publishedGoogle Scholar
  11. 11.
    D. Bimberg: Advances in Solid State Physics (ed.: J.Treusch ), PergamdnVieweg, Braunschweig, 1977, p. 195Google Scholar
  12. 12.
    G. Bastard, E.E. Mendez, L.L. Chang and L. Esaki: Phys.Rev. B 26, 1974 (1982)CrossRefGoogle Scholar
  13. 13.
    J. Christen, A. Steckenborn, D. Bimberg and G. Weimann: Verhandlg. DPG VI,18, 668 (1983) and J.Christen, D.Bimberg, A.Steckenborn and G.Weimann: Appl. Phys. Lett. 44, 84 (1984)Google Scholar
  14. 14.
    E.O. Göbel, H. Jung, J. Kuhl and K. Ploog: Phys.Rev.Lett. 51, 1588 (1983)CrossRefGoogle Scholar
  15. 15.
    R.C. Miller, D.A. Kleinmann, A.C. Gossard, O. Munteanu: Phys.Rev. B 25, 6545 (1982)CrossRefGoogle Scholar
  16. 16.
    G. Bastard: Phys.Rev. B 24, 4714 (1981)CrossRefGoogle Scholar
  17. 17.
    C. Mailhiot, Y.C. Chang, T.C. McGill: Phys.Rev. B 26, 4449 (1982)CrossRefGoogle Scholar
  18. 18.
    D. Bimberg, K.H. Goetz and M. Razeghi: to be publishedGoogle Scholar
  19. 19.
    D. von der Linde and R. Lambrich: Phys.Rev.Lett. 42, 1090 (1979)CrossRefGoogle Scholar
  20. 20.
    H. Münzel, D. Bimberg and A. Steckenborn: Physica 117 + 118 B, 214 (1983)Google Scholar
  21. 21.
    N. Holonyak, R.M. Kolbas, W.D. Laidig, B.A. Vojak, R.D.Dupuis and P.D. Dapkus: Appl. Phys. Lett. 33, 737 (1978)Google Scholar
  22. 22.
    J.P. Van der Ziel, R. Dingle, R.C. Miller, W. Wiegmann and W.A. Nordland: Appl.Phys. Lett. 26, 464 (1975)Google Scholar
  23. 23.
    W.T. Tsang: Appl. Phys. Lett. 39, 786 (1981)CrossRefGoogle Scholar
  24. 24.
    S.D. Hersee, M. Baldy, P. Assenat, B. de Cremoux and J.P. Duchemin: Electron. Lett. 18, 870 (1982)Google Scholar
  25. 25.
    H.E. Schöll, D. Bimberg, H. Schumacher and P.T. Landsberg: IEEE J.Quantum Elect. in printGoogle Scholar
  26. 26.
    R. Chin, N. Holonyak, B.A. Vojak, K. Hess, R.D. Dupuis and P.D. Dapkus: Appl. Phys. Lett. 36, 19 (1980)CrossRefGoogle Scholar
  27. 27.
    H.D. Wolff, K. Mettler, K.H. Zschauer: Jap. J. Appl.Phys. 20,L 693 (1981)Google Scholar
  28. 28.
    N.K. Dutta: J. Appl. Phys. 54, 1236 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • D. Bimberg
    • 1
  • J. Christen
    • 1
  • A. Steckenborn
    • 2
  1. 1.Institut für Festkörperphysik ITechnische Universität BerlinBerlin 12Deutschland
  2. 2.Heinrich-Hertz-Institut für Nachrichtentechnik Berlin GmbHBerlin 10Deutschland

Personalised recommendations