Light-Dependence of Phytoplankton Photosynthesis in the Antarctic Ocean: Implications for Regulating Productivity

  • M. M. Tilzer
  • B. von Bodungen
  • V. Smetacek


The relationships of vertical profiles of phytoplankton photosynthesis to under-water light were studied at 23 stations in the South Scotia Sea and Bransfield Strait. On 3 occasions diurnal photosynthetic patterns were monitored. Chlorophyll-a concentrations varied by a factor of 16.5. Eighty per cent of the variations in light extinction could be explained by variations in chl-a concentration. Accordingly, the euphotic zone (1% surface light level) varied from 15 to 70 m. Photosynthetic profiles were studied in order to assess the production potential of Antarctic phytoplankton. The photosynthetic capacity (photosynthesis per chl-a at optimum light) and maximum quantum yield of photosynthesis (moles carbon dioxide assimilated per mole light quanta absorbed) on the average were smaller by a factor of 7 and 4, respectively, than in phytoplankton at lower latitudes. Diminished low-light photosynthesis suggests that in Antarctic waters temperature-controlled processes take over as rate-limiting steps in otherwise light-limited situations. The utilization efficiency of incident irradiance by phytoplankton at any level of chlorophyll concentration is diminished by both reductions in the photosynthetic capacity and lower light-limited quantum yields. By the combination of both effects, phytoplankton in Antarctic waters can utilize incident light only inefficiently even in situations where biomass accumulation is high.


Photosynthetically Active Radiation Chlorophyll Concentration Maximum Quantum Yield Phytoplankton Photosynthesis Assimilation Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atlas D, Bannister TT (1980) Dependence of mean spectral extinction coefficient of phytoplankton on depth, water colour, and species. Limnol Oceanogr 25: 157–159CrossRefGoogle Scholar
  2. Bannister TT (1974) Production equations in terms of chlorophyll concentration, quantum yield, and upper limit to production. Limnol Oceanogr 19: 1–12CrossRefGoogle Scholar
  3. Bannister TT, Weidemann AD (1984) The maximum quantum yield of phytoplankton photosynthesis in situ. J Plankton Res 6: 275–294CrossRefGoogle Scholar
  4. Côté B, Platt T (1983) Day-to-day variations in the spring—summer photosynthetic parameters of coastal phytoplankton. Limnol Oceanogr 28: 320–344CrossRefGoogle Scholar
  5. Dubinsky Z (1980) Light utilization efficiency in natural phytoplankton communities. In: Falkowski P (ed) Primary Productivity in the Sea, Plenum, New York, pp 83–97CrossRefGoogle Scholar
  6. Elbrächter M (1981) Arten und Größenspektrum des Mikroplanktons. In: Zeitzschel, Zenk BW, (eds) Beobachtungen und erste Ergebnisse der „Meteor“ Reise 56 aus der Scotia See und der Bransfield Straße im November/Dezember 1980 (ANT I): Ein nautischer und wissenschaftlicher Bericht. Berichte aus dem Institut für Meereskunde, Kiel, Nr 80 pp 54–55Google Scholar
  7. El-Sayed SZ (1970) On the productivity of the Southern Ocean (Atlantic and Pacific sectors). In: Holdgate A (ed) Antarctic Ecology, vol 1 Academic, New York, pp 119–135Google Scholar
  8. EI-Sayed SZ, Mandelli EF, Sugimura Y (1964) Primary organic production in the Drake Passage and Bransfield Strait. In: Lee M (ed) Biology of the Antarctic seas. I. Antarctic research ser. vol 1 American Geophysical Union, Washington DC, pp 1–11CrossRefGoogle Scholar
  9. EI-Sayed SZ, Weber LH (1982) Spatial and temporal variations in phytoplankton biomass and primary productivity in the Southwest Atlantic and the Scotia Sea. Polar Biology 1: 83–90Google Scholar
  10. Falkowski PG (1981) Light-shade adaptation and assimilation numbers. J Plankton Res 3: 203–216CrossRefGoogle Scholar
  11. Frost BW (1972) Effects of size and concentration of food particles on the feeding behaviour of Clanus pacificus. Limnol Oceangr 17: 805–815CrossRefGoogle Scholar
  12. Frost BW (1975) A threshold feeding behaviour in Calanus pacificus. Limnol Oceanogr 20: 263–266CrossRefGoogle Scholar
  13. Haardt H, Maassen R (1981) Optische Beobachtungen. In: Zeitzschel, BW Zenk (eds) Beobachtungen und erste Ergebnisse der „Meteor“ Reise 56 aus, der Scotia See und der Bransfield Straße im November/Dezember 1980 (ANT I): Ein nautischer und wissenschaftlicher Bericht. Berichte aus dem Institut für Meereskunde, Kiel Nr 80 pp 21–27Google Scholar
  14. Haardt H, Maassen R (1983) CTD and optical data from the Antarctic-Meteor 56 ANT I-Part I: CTD and Chlorophyll profiles. Report 57, Sonderforschungsbereich 95, University of KielGoogle Scholar
  15. Holm-Hansen O, El-Sayed SZ, Franzeschini G, Cukel R (1977) Primary production and the factors controlling phytoplankton growth in the Southern Ocean. In: Llano GA (ed) Adaptations within Antarctic Ecosystems Proc. 3rd SCAR Symposium Antarctic Biol. Smithsonian Institution pp 11–50Google Scholar
  16. Jacques G (1983) Some ecophysiological aspects of the Antarctic phytoplankton. Polar Biology 2: 27–33CrossRefGoogle Scholar
  17. Jewson DH (1977) The interaction of components controlling net phytoplankton photosynthesis in a well mixed lake (Lough Neagh, Northern Ireland). Freshwater Biol 6: 551–576CrossRefGoogle Scholar
  18. Megard RO, Combs WS Jr, Smith PD, Knoll AS (1979) Attenuation of light and integral rates of photosynthesis attained by planktonic algae. Limnol Oceanogr 24: 1038–1050CrossRefGoogle Scholar
  19. Morel A (1978) Available, usuable and stored radiant energy in relation to marine photosynthesis. Deep-Sea Res 25: 673–688CrossRefGoogle Scholar
  20. Neori A, Holm-Hansen O (1982) Effect of temperature on rate of photosynthesis in Antarctic phytoplankton. Polar Biology 1: 33–38CrossRefGoogle Scholar
  21. Paden CA, Hewes CD, Neori A, Holm-Hansen O, Weaver E, Kiefer DA, Sakshang E (1981) Phytoplankton studies in the Scotia Sea. Antarctic JUS 16: 163–164Google Scholar
  22. Platt T, Jassby AD (1976) The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J Phycol 12: 421–430Google Scholar
  23. Rodhe W (1965) Standard correlations between pelagic photosynthesis and light. In: Goldman CR (ed) Primary Productivity in Aquatic Environments, Berkeley. Mem Ist Ital Idrobiol 18: 367–381Google Scholar
  24. Rönner U, Sörensen F, Holm-Hansen O (1983) Nitrogen assimilation by phytoplankton in the Scotia Sea. Polar Biology 2: 137–147CrossRefGoogle Scholar
  25. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analyses. Bull Fish Res Board Can 167: 1–311Google Scholar
  26. Tailing JF (1957) The phytoplankton population as a compound photosynthetic system. New Phytol 56: 133–149CrossRefGoogle Scholar
  27. Tailing JF (1971) The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt Int Ver Limnol 19: 214–143Google Scholar
  28. Tilzer MM (1978) Prediction of productivity changes in Lake Tahoe at increasing phytoplankton biomass. Verh Int Limnol 2: 407–413Google Scholar
  29. Tilzer MM (1983) The importance of fractional light absorption by photosynthetic pigments for phytoplankton productivity in Lake Constance. Limnol Oceanogr 28: 833–846CrossRefGoogle Scholar
  30. Tilzer MM (1984a) Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes. J Plankton Res 6: 309–324CrossRefGoogle Scholar
  31. Tilzer MM (1984b) The quantum yield as a fundamental parameter controlling vertical photosynthetic profiles of phytoplankton in Lake Constance. Arch Hydrobiol Suppl. 69: 169–198Google Scholar
  32. Tilzer MM, de Amezaga E, Goldman CR (1975) The efficiency of light energy utilization by lake phytoplankton. Verh Int Ver Limnol 19: 800–807Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • M. M. Tilzer
    • 1
  • B. von Bodungen
    • 2
  • V. Smetacek
    • 2
  1. 1.Limnological InstituteUniversity of ConstanceKonstanzGermany
  2. 2.Institute for Marine Sciences, Division of Marine PlanktologyUniversity of KielKielGermany

Personalised recommendations