Skip to main content

Light-Dependence of Phytoplankton Photosynthesis in the Antarctic Ocean: Implications for Regulating Productivity

  • Conference paper

Summary

The relationships of vertical profiles of phytoplankton photosynthesis to under-water light were studied at 23 stations in the South Scotia Sea and Bransfield Strait. On 3 occasions diurnal photosynthetic patterns were monitored. Chlorophyll-a concentrations varied by a factor of 16.5. Eighty per cent of the variations in light extinction could be explained by variations in chl-a concentration. Accordingly, the euphotic zone (1% surface light level) varied from 15 to 70 m. Photosynthetic profiles were studied in order to assess the production potential of Antarctic phytoplankton. The photosynthetic capacity (photosynthesis per chl-a at optimum light) and maximum quantum yield of photosynthesis (moles carbon dioxide assimilated per mole light quanta absorbed) on the average were smaller by a factor of 7 and 4, respectively, than in phytoplankton at lower latitudes. Diminished low-light photosynthesis suggests that in Antarctic waters temperature-controlled processes take over as rate-limiting steps in otherwise light-limited situations. The utilization efficiency of incident irradiance by phytoplankton at any level of chlorophyll concentration is diminished by both reductions in the photosynthetic capacity and lower light-limited quantum yields. By the combination of both effects, phytoplankton in Antarctic waters can utilize incident light only inefficiently even in situations where biomass accumulation is high.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atlas D, Bannister TT (1980) Dependence of mean spectral extinction coefficient of phytoplankton on depth, water colour, and species. Limnol Oceanogr 25: 157–159

    Article  CAS  Google Scholar 

  • Bannister TT (1974) Production equations in terms of chlorophyll concentration, quantum yield, and upper limit to production. Limnol Oceanogr 19: 1–12

    Article  Google Scholar 

  • Bannister TT, Weidemann AD (1984) The maximum quantum yield of phytoplankton photosynthesis in situ. J Plankton Res 6: 275–294

    Article  CAS  Google Scholar 

  • Côté B, Platt T (1983) Day-to-day variations in the spring—summer photosynthetic parameters of coastal phytoplankton. Limnol Oceanogr 28: 320–344

    Article  Google Scholar 

  • Dubinsky Z (1980) Light utilization efficiency in natural phytoplankton communities. In: Falkowski P (ed) Primary Productivity in the Sea, Plenum, New York, pp 83–97

    Chapter  Google Scholar 

  • Elbrächter M (1981) Arten und Größenspektrum des Mikroplanktons. In: Zeitzschel, Zenk BW, (eds) Beobachtungen und erste Ergebnisse der „Meteor“ Reise 56 aus der Scotia See und der Bransfield Straße im November/Dezember 1980 (ANT I): Ein nautischer und wissenschaftlicher Bericht. Berichte aus dem Institut für Meereskunde, Kiel, Nr 80 pp 54–55

    Google Scholar 

  • El-Sayed SZ (1970) On the productivity of the Southern Ocean (Atlantic and Pacific sectors). In: Holdgate A (ed) Antarctic Ecology, vol 1 Academic, New York, pp 119–135

    Google Scholar 

  • EI-Sayed SZ, Mandelli EF, Sugimura Y (1964) Primary organic production in the Drake Passage and Bransfield Strait. In: Lee M (ed) Biology of the Antarctic seas. I. Antarctic research ser. vol 1 American Geophysical Union, Washington DC, pp 1–11

    Chapter  Google Scholar 

  • EI-Sayed SZ, Weber LH (1982) Spatial and temporal variations in phytoplankton biomass and primary productivity in the Southwest Atlantic and the Scotia Sea. Polar Biology 1: 83–90

    Google Scholar 

  • Falkowski PG (1981) Light-shade adaptation and assimilation numbers. J Plankton Res 3: 203–216

    Article  CAS  Google Scholar 

  • Frost BW (1972) Effects of size and concentration of food particles on the feeding behaviour of Clanus pacificus. Limnol Oceangr 17: 805–815

    Article  Google Scholar 

  • Frost BW (1975) A threshold feeding behaviour in Calanus pacificus. Limnol Oceanogr 20: 263–266

    Article  Google Scholar 

  • Haardt H, Maassen R (1981) Optische Beobachtungen. In: Zeitzschel, BW Zenk (eds) Beobachtungen und erste Ergebnisse der „Meteor“ Reise 56 aus, der Scotia See und der Bransfield Straße im November/Dezember 1980 (ANT I): Ein nautischer und wissenschaftlicher Bericht. Berichte aus dem Institut für Meereskunde, Kiel Nr 80 pp 21–27

    Google Scholar 

  • Haardt H, Maassen R (1983) CTD and optical data from the Antarctic-Meteor 56 ANT I-Part I: CTD and Chlorophyll profiles. Report 57, Sonderforschungsbereich 95, University of Kiel

    Google Scholar 

  • Holm-Hansen O, El-Sayed SZ, Franzeschini G, Cukel R (1977) Primary production and the factors controlling phytoplankton growth in the Southern Ocean. In: Llano GA (ed) Adaptations within Antarctic Ecosystems Proc. 3rd SCAR Symposium Antarctic Biol. Smithsonian Institution pp 11–50

    Google Scholar 

  • Jacques G (1983) Some ecophysiological aspects of the Antarctic phytoplankton. Polar Biology 2: 27–33

    Article  Google Scholar 

  • Jewson DH (1977) The interaction of components controlling net phytoplankton photosynthesis in a well mixed lake (Lough Neagh, Northern Ireland). Freshwater Biol 6: 551–576

    Article  Google Scholar 

  • Megard RO, Combs WS Jr, Smith PD, Knoll AS (1979) Attenuation of light and integral rates of photosynthesis attained by planktonic algae. Limnol Oceanogr 24: 1038–1050

    Article  Google Scholar 

  • Morel A (1978) Available, usuable and stored radiant energy in relation to marine photosynthesis. Deep-Sea Res 25: 673–688

    Article  CAS  Google Scholar 

  • Neori A, Holm-Hansen O (1982) Effect of temperature on rate of photosynthesis in Antarctic phytoplankton. Polar Biology 1: 33–38

    Article  CAS  Google Scholar 

  • Paden CA, Hewes CD, Neori A, Holm-Hansen O, Weaver E, Kiefer DA, Sakshang E (1981) Phytoplankton studies in the Scotia Sea. Antarctic JUS 16: 163–164

    Google Scholar 

  • Platt T, Jassby AD (1976) The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J Phycol 12: 421–430

    Google Scholar 

  • Rodhe W (1965) Standard correlations between pelagic photosynthesis and light. In: Goldman CR (ed) Primary Productivity in Aquatic Environments, Berkeley. Mem Ist Ital Idrobiol 18: 367–381

    Google Scholar 

  • Rönner U, Sörensen F, Holm-Hansen O (1983) Nitrogen assimilation by phytoplankton in the Scotia Sea. Polar Biology 2: 137–147

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analyses. Bull Fish Res Board Can 167: 1–311

    Google Scholar 

  • Tailing JF (1957) The phytoplankton population as a compound photosynthetic system. New Phytol 56: 133–149

    Article  Google Scholar 

  • Tailing JF (1971) The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt Int Ver Limnol 19: 214–143

    Google Scholar 

  • Tilzer MM (1978) Prediction of productivity changes in Lake Tahoe at increasing phytoplankton biomass. Verh Int Limnol 2: 407–413

    Google Scholar 

  • Tilzer MM (1983) The importance of fractional light absorption by photosynthetic pigments for phytoplankton productivity in Lake Constance. Limnol Oceanogr 28: 833–846

    Article  CAS  Google Scholar 

  • Tilzer MM (1984a) Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes. J Plankton Res 6: 309–324

    Article  Google Scholar 

  • Tilzer MM (1984b) The quantum yield as a fundamental parameter controlling vertical photosynthetic profiles of phytoplankton in Lake Constance. Arch Hydrobiol Suppl. 69: 169–198

    Google Scholar 

  • Tilzer MM, de Amezaga E, Goldman CR (1975) The efficiency of light energy utilization by lake phytoplankton. Verh Int Ver Limnol 19: 800–807

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tilzer, M.M., von Bodungen, B., Smetacek, V. (1985). Light-Dependence of Phytoplankton Photosynthesis in the Antarctic Ocean: Implications for Regulating Productivity. In: Siegfried, W.R., Condy, P.R., Laws, R.M. (eds) Antarctic Nutrient Cycles and Food Webs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82275-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82275-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82277-3

  • Online ISBN: 978-3-642-82275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics