Theory of Antiferromagnetic Superconductors

  • K. Levin
  • M. J. Nass
  • Charles Ro
  • Gary S. Grest
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 52)


It is useful to summarize the basic theoretical picture that we now have of antiferromagnetic (AF) superconductors. For definiteness we’ll focus on the two types of ternary compounds RERh4B4 and REMo6S8 where RE denotes a rare earth element. There are a number of factors which aid the coexistence of antiferromagnetism and superconductivity. In the first place there are believed to be three distinct classes of electrons which play an important role in these systems. The RE f electrons undergo magnetic order. The d electrons associated with Rh or Mo are superconducting. Finally the electrons which mediate the RKKY interactions between the RE localized electrons have probably little to do with the superconducting electrons and constitute a distinct (third) class of electrons. It is important to recognize that in the ternary superconductors the electrons which mediate or undergo magnetic order are distinct from those which are superconducting. The second factor which aids coexistence has to do with the nature of the AF order parameter, called <SQ>. The fact that the wave vector Q of the AF order is considerably larger than ξ−1 means that on the size scale of a Cooper pair the average molecular field vanishes. By contrast,in ferromagnets the fact that Q<ξ−1 is at the heart of the very strong incompatibility between ferromagnetism and superconductivity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Machida, K. Nokora and T. Matsubara, Phys. Rev. B22, 2307 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    M.J. Nass, K. Levin and G.S. Grest, Phys. Rev. B25, 4541 (1982)ADSGoogle Scholar
  3. See also M.J. Nass, K. Levin and G.S. Grest, Phys. Rev. Lett. 46, 614 (1981).ADSCrossRefGoogle Scholar
  4. 3.
    G. Zwicknagl and P. Fulde, Z. Physik B43, 23 (1981).ADSGoogle Scholar
  5. 4.
    J. Ashkenazi, C.G. Kuper and Amiram Ron, Phys. Rev. B28, 468 (1983).Google Scholar
  6. 5.
    T.V. Ramakrishnan and C.M. Varma, Phys. Rev. B24, 1377 1981.Google Scholar
  7. 6.
    S. Maekawa and M. Tachiki, Phys. Rev. 818, 4688 (1978).Google Scholar
  8. 7.
    C.F. Majkrzak, G. Shirane, W. Thomlinson, M. Ishikawa, ø. Fischer and D.E. Moncton, Solid State Commun. 31, 773 (1979).ADSCrossRefGoogle Scholar
  9. 8.
    M. Tachiki, H. Matsumoto and H. Umezawa, Phys. Rev. B 20, 1915 (1979).ADSCrossRefGoogle Scholar
  10. 9.
    W. Thomlinson, G. Shirane, D.E. Moncton, M. Ishikawa and ø. Fischer, Phys. Rev. B23, 4455 (1981).ADSCrossRefGoogle Scholar
  11. 10.
    M. Ishikawa and J. Muller, Solid State Comm. 27, 761 (1978)ADSCrossRefGoogle Scholar
  12. R. Oder-matt, M. Hardiman and J. Van Neijel, ibid. 32, 1227 (1979).ADSGoogle Scholar
  13. 11.
    Charles Ro and K. Levin (preprint).Google Scholar
  14. 12.
    See also Y. Okabe and A.D.S. Nagi, Phys. Rev. 828, 6290 (1983).Google Scholar
  15. 13.
    J. Keller, Proceedings of the European Physical Society (to be published).Google Scholar
  16. 14.
    G. Bilbro and W.L. McMillan, Phys. Rev. B14, 1887 (1976).ADSCrossRefGoogle Scholar
  17. 15.
    H.C. Hamaker, L.D. Wolff, H.B. Mackay, Z. Fisk and M.B. Maple, Solid State Commun. 32, 289 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • K. Levin
    • 1
  • M. J. Nass
    • 1
  • Charles Ro
    • 1
  • Gary S. Grest
    • 2
  1. 1.The James Franck InstituteThe University of ChicagoChicagoUSA
  2. 2.Exxon Research and Engineering CompanyAnnandaleUSA

Personalised recommendations