Skip to main content

Theory of Infrared Conductivity from Density Waves: (TMTSF)2CIO4

  • Conference paper
Book cover Superconductivity in Magnetic and Exotic Materials

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 52))

Abstract

In Fig. 1 I show schematically the real part of the conductivity below about 50 wavenumbers obtained by NG, TIMUSK, and BECHGAARD [1] for (TMTSF)2ClO4 at 2K and zero pressure. Similar results were obtained by CHALLENER, RICHARDS and GREENE [2]. When I first saw these results late in 1982, we believed that at this temperature the specimen was in a spin density wave (SDW) state. The sharp peak at 7 cm−1 and the asymmetric peak commencing slightly above 20 cm−1 suggest the sharp phonon peaks and asym-metric single-particle peak in Reσ(ω) for TEA(TCNQ)2 explained by the theory of Michael RICE and colleagues [3,4]. In the Rice theory, intramolecular vibrational modes which are infrared inactive for a normal metallic or insulating state become active in the presence of a charge density wave (CDW), and the phonon states with wavevector equal to the CDW wavevector Q and with frequency in the gap for electron states are very sharp. The problem appeared then to be that we required a theory for a similar effect arising from a SDW in (TMTSF) 2ClO4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.K. Ng, T. Timusk, and K. Bechgaard: J. Physique, to be published

    Google Scholar 

  2. W.A. Challener, P.L. Richards, and R.L. Greene: Bull. Am. Phys. Soc. 28, 445 (1983)

    Google Scholar 

  3. M.J. Rice: Phys. Rev. Lett. 37, 36 (1976)

    Article  ADS  Google Scholar 

  4. M.J. Rice, L. Pietronero, and P. Bruesch: Solid State Comm. 21, 757 (1977)

    Article  ADS  Google Scholar 

  5. J.J. Hopfield: Phys. Rev. 139, A419 (1965)

    Article  ADS  Google Scholar 

  6. P.A. Fedders and P.C. Martin: Phys. Rev. 143, 245 (1966)

    Article  ADS  Google Scholar 

  7. P.A. Lee, T.M. Rice, and P.W. Anderson: Solid State Comm. 14, 703 (1974)

    Article  ADS  Google Scholar 

  8. E.W. Fenton and C.R. Leavens: J. Phys. F 10, 1853 (1980)

    Article  ADS  Google Scholar 

  9. J.B. Torrance, H.J. Pedersen, and K. Bechgaard: Phys. Rev. Lett. 49, 881 (1982)

    Article  ADS  Google Scholar 

  10. P.B. Allen: Phys. Rev. B3, 305 (1971)

    Article  ADS  Google Scholar 

  11. J.P. Pouget, R. Moret, R. Comes, G. Shirane, K. Bechgaard and J.M. Fabre: J. Physique, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fenton, E.W. (1984). Theory of Infrared Conductivity from Density Waves: (TMTSF)2CIO4 . In: Matsubara, T., Kotani, A. (eds) Superconductivity in Magnetic and Exotic Materials. Springer Series in Solid-State Sciences, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82259-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82259-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82261-2

  • Online ISBN: 978-3-642-82259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics