Advertisement

Laser Studies of Surface Chemical Reactions

  • R. R. Cavanagh
  • D. S. King
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 35)

Abstract

Currently lasers are being applied to study a very broad range of problems in surface chemistry and surface physics. In many of these areas the introduction of laser probes complements or duplicates more conventional or traditional instrumentation. For instance, surface-enhanced [6.1,2] or unenhanced [6.3] Raman scattering provides the same type of vibrational structure information of surface adsorbates as obtained through reflection absorption infrared and electron energy loss spectroscopies [6.4]. The pulsed laser atom probe is receiving attention as a potential technique for characterizing surface composition and depth profiling [6.5], but does not yet significantly extend the temporal or spatial resolution available from the more traditional atom probe techniques [6.6]. In several specialized research areas laser-induced desorption, sputtering and multiphonon ionization are replacing conventional mass spectrometer ionization sources, but result in chemical speciation data comparable to conventional mass spectrometer [6.7] sources. There are many specific and important areas of surface chemistry/physics where the spatial resolution and high power densities available with lasers present the potential for real scientific advancement [6.8,9]. One obvious such area is semiconductor device fabrication [6.10]. Alternatively, lasers provide the capability to distinguish between reactive (or product species) of the same chemical identity but which occur with differing amounts or types of internal excitation due to competing reaction pathways. This potential for detailed, quantum-state specific information about surface chemical processes opens the door to exploring and, hopefully, unraveling the complex dynamical interplay in chemical processes occurring at the gas-solid interface.

Keywords

Surface Enhance Raman Scattering Flux Distribution Rotational State Doppler Profile Surface Chemical Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    R. Chang, T.E. Furtak: Surface Enhanced Raman Scattering ( Plenum, New York 1981 ).Google Scholar
  2. 6.
    R.P. Van Duyne: In: Chemical and Biochemical Applications of Lasers,Vol.4, ed. by C.B. Moore (Academic, New York 1979) p.1O1Google Scholar
  3. 6.3
    A. Champion, J.K. Brown, V.M. Grizzle: J. Vac. Sci. Technol. 20, 893 (1982)CrossRefGoogle Scholar
  4. Champion, J.K. Brown, V.M. Grizzle: Surf. Sci. 115, L153 (1982)CrossRefGoogle Scholar
  5. 6.4
    A.T. Bell, M.L. Hair (eds.): Vibrational Spectroscopies for Adsorbed Species, ACS Symposium Series, 137 (ACS, Washington D.C. 1980 )Google Scholar
  6. 6.5
    W. Drachsel, Th. Jentsch, J.H. Block: In Proc. 29th International Field Emission Symposium ( Almgviste and Wiksell International, Stockholm 1982 ) p. 299Google Scholar
  7. 6.6
    R. Wagner: Field-Ion Microscopy, Vol. 5 of Crystals Growth, Properties and Applications, ed. by G.J.M. Rocijmons ( Springer, Berlin, Heidelberg, New York 1982 )CrossRefGoogle Scholar
  8. 6.7
    G.M. Hieftje, J.C. Travis, F.E. Lytle: Lasers in Chemical Analysis ( Humana Press, New Jersey 1981 )CrossRefGoogle Scholar
  9. 6.8
    J.F. Ready: Industrial Applications of Lasers ( Academic, New York 1978 )Google Scholar
  10. J.F. Ready: Effects of High-Power Laser Radiation ( Academic, New York 1971 )Google Scholar
  11. 6.9
    M. Bertolotti (ed.): Physical Processes in Laser-Materials Interactions ( Plenum, New York 1983 )Google Scholar
  12. 6.10
    D.J. Erlich, R.M. Osgood, T.F. Deutsch: J. Vac. Sci. Technol. 21, 23 (1982)CrossRefGoogle Scholar
  13. 6.11
    R. Schinke: J. Chem. Phys. 72, 1120 (1980)CrossRefGoogle Scholar
  14. R. Schinke: J. Chem. Phys. 76, 2352 (1982)CrossRefGoogle Scholar
  15. 6.12
    H. Loesch: Adv. Chem. Phys. 42, 421 (1980)CrossRefGoogle Scholar
  16. 6.13
    K. Bergmann, U. Hefter, J. Witt: J. Chem. Phys. 72, 4777 (1980)CrossRefGoogle Scholar
  17. 6.14
    J.C. Polanyi, R.J. Wolf: Ber. Bunsenges. Phys. Chem. 86, 356 (1982)CrossRefGoogle Scholar
  18. 6.15
    R. Schinke: Surf. Sci. 127, 283 (1983)CrossRefGoogle Scholar
  19. 6.16
    J.E. Hurst, G.D. Kubiak, R.N. Zare: Chem. Phys. Lett. 93, 235 (1982)CrossRefGoogle Scholar
  20. 6.17
    J.A. Barker, A.W. Kleyn, D.J. Auerbach: Chem. Phys. Lett. 97, 9 (1983)CrossRefGoogle Scholar
  21. 6.18
    J.C. Tully: Ann. Rev. Phys. Chem. 31, 319 (1980)CrossRefGoogle Scholar
  22. 6.19
    R. Englemann, P.E. Rouse, H.M. Peek, V.D. Baiamonte: Los Alamos Scientific Lab. Report, LA-4364 (1970)Google Scholar
  23. 6.20
    G.M. McClelland, G.D. Kubiak, H.G. Rennagel, R.N. Zare: Phys. Rev. Lett. 46, 831 (1981)CrossRefGoogle Scholar
  24. 6.21
    A.W. Kleyn, A.C. Luntz, D.J. Auerbach: Phys. Rev. Lett. 47, 1169 (1981)CrossRefGoogle Scholar
  25. 6.22
    A.C. Luntz, A.W. Kleyn, D.J. Auerbach: Phys. Rev. B25, 4273 (1982)CrossRefGoogle Scholar
  26. 6.23
    A.W. Kleyn, A.C. Luntz, D.J. Auerbach: Surf. Sci. 117, 33 (1982)CrossRefGoogle Scholar
  27. 6.24
    J.C. Polanyi, J.L. Schreiber: Discuss. Faraday Soc. 62, 267 (1977)CrossRefGoogle Scholar
  28. 6.25
    R.D. Levin, R.B. Bernstein: Molecular Reaction Dynamics (Oxford Univ Press, New York 1974 )Google Scholar
  29. 6.26
    R.R. Cavanagh, D.S. King: Phys. Rev. Lett. 47, 1829 (1981)CrossRefGoogle Scholar
  30. 6.27
    J.W. Gadzuk, U. Landman, E.J. Kuster, C.L. Cleveland, R.N. Barnett: Phys. Rev. Lett. 49, 426 (1982)CrossRefGoogle Scholar
  31. J.W. Gadzuk, U. Landman, E.J. Kuster, C.L. Cleveland, R.N. Barnett: J. Electron Spectrosc. Relat. Phenom. 30, 103 (1983)CrossRefGoogle Scholar
  32. 6.28
    J.M. Bowman, J.L. Gossage: Chem. Phys. Lett. 96, 481 (1983)CrossRefGoogle Scholar
  33. 6.29
    S. Bialkowski: J. Chem. Phys. 78, 600 (1983)CrossRefGoogle Scholar
  34. 6.30
    B.E. Hayden, K. Kretzschmar, A.M. Bradshaw: Surf. Sci. 125, 366 (1983)CrossRefGoogle Scholar
  35. 6.31
    E. Umbach, S. Kulkarni, P. Feulner, D. Menzel: Surf. Sci. 88, 65 (1979)CrossRefGoogle Scholar
  36. 6.32
    M. Asscher, W.L. Guthrie, T.-H. Lin, G.A. Somarjai: J. Chem. Phys. 78, 6992 (1983)CrossRefGoogle Scholar
  37. 6.33
    T. Matsushima: Surf. Sci. 123, L663 (1982)CrossRefGoogle Scholar
  38. 6.34
    G. Comsa, R. David: Surf. Sci. 117, 77 (1982)CrossRefGoogle Scholar
  39. 6.35
    M. Balooch, M.J. Cardillo, D.R. Miller, R.E. Stickney: Surf. Sci. 46, 358 (1974)CrossRefGoogle Scholar
  40. 6.36
    S.T. Ceyer, W.L. Guthrie, T.-H. Lin, G.A. Somarjai: J. Chem. Phys. 78, 6982 (1983)CrossRefGoogle Scholar
  41. 6.37
    A.T. Modak, P.J. Pagni: J. Chem. Phys. 65, 1327 (1976)CrossRefGoogle Scholar
  42. 6.38
    D.S. King, R.R. Cavanagh: J. Chem. Phys. 76, 5634 (1982)CrossRefGoogle Scholar
  43. 6.39
    D. Grischkowsky, M.L. Yu, A.C. Balant: Surf. Sci. 127, 315 (1983)CrossRefGoogle Scholar
  44. 6.
    N. Winograd: This volumeGoogle Scholar
  45. 6.41
    A. Laubereau, W. Kaiser: Rev. of Mod. Phys. 50, 607 (1978)CrossRefGoogle Scholar
  46. 6.42
    S.M. George, H. Auweter, C.B. Harris: J. Chem. Phys. 73, 5573 (1980)CrossRefGoogle Scholar
  47. 6.43
    R.J. Abbott, D.W. Oxtoby: J. Chem. Phys. 70, 4703 (1979)CrossRefGoogle Scholar
  48. 6.44
    K.E. Jones, A. Nichols, A.H. Zewail: J. Chem. Phys. 69, 3350 (1978)CrossRefGoogle Scholar
  49. 6.45
    B.F. Levin, C.V. Shank, J.P. Heritage: IEEE J. Quantum Electron. QE15, 1418 (1979)Google Scholar
  50. 6.46
    K.B. Eisenthal, R.M. Hochstrasser, W. Kaiser, A. Laubereau (eds.): Picosecond Phenomena III, Springer Series in Chemical Physics, Vol. 23 ( Springer, Berlin Heidelberg New York 1982 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • R. R. Cavanagh
  • D. S. King

There are no affiliations available

Personalised recommendations