Advertisement

Ising Model Simulations of Crystal Growth

  • G. H. Gilmer
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 35)

Abstract

Kinetic Ising model simulations have elucidated many aspects of crystal growth. For example, studies of the motion of close-packed surfaces of perfect crystals provided evidence for a surface roughening transition, where the two-dimensional nucleation barrier disappears [13.1–3]. Competing mechanisms such as spiral growth and 2d nucleation have been simulated and the relative importance of the processes has been assessed [13.3,4].

Keywords

Screw Dislocation Simple Cubic Spiral Growth Alloy Crystal Kink Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 13.1
    The surface roughening transition has been reviewed by H.J. Leamy, G.H. Gilmer, K.A. Jackson: In Surface Physics of Materials I, ed. by J.B. Blakeley ( Academic, New York 1975 ) p. 121;Google Scholar
  2. J.D. Weeks: In Ordering in Strongly Fluctuating Condensed Matter Systems, ed. by T. Riste ( Plenum, New York 1980 ) p. 293Google Scholar
  3. 13.2
    G.H. Gilmer, P. Bennema: J. Appl. Phys. 43, 1347 (1972);CrossRefGoogle Scholar
  4. S.W.H. de Haan, V.J.A. Meeussen, B.P. Veltman, P. Bennema, C. van Leeuwen, G.H. Gilmer: J. Crystal Growth 24/25, 491 (1974)Google Scholar
  5. 13.3
    A review of surface roughening and crystal growth kinetics in general is provided by J.D. Weeks, G.H. Gilmer: Advances in Chem. Phys. 40, 157 (1979).Google Scholar
  6. J.P. van der Eerden, P. Bennema, T.A. Cherepanova: In Progress in Crystal Growth and Characterization 3, ed. by B.R. Pamplin ( Pergamon, Oxford 1979 ) p. 219Google Scholar
  7. 13.4
    G.H. Gilmer: J. Crystal Growth 35, 15 (1976); andGoogle Scholar
  8. R.H. Swendsen, P.J. Kortman, D.P. Landau, H. Müller-Krumbhaar: J. Crystal Growth 35, 73 (1976)CrossRefGoogle Scholar
  9. 13.5
    J. Narayan, W.L. Brown, R.A. Lemons (eds): Laser-Solid Interactions and Transient Thermal Processing of Materials ( North-Holland, Amsterdam 1983 )Google Scholar
  10. 13.6
    D. Furman, S. Dattagupta, R.B. Griffith: Phys. Rev. 815, 441 (1977)Google Scholar
  11. 13.7
    F.L. Williams, D. Nason: Surf. Sci. 45, 377 (1974);CrossRefGoogle Scholar
  12. U.S. Sundarum, P. Wynblatt: Surf. Sci. 52, 569 (1975);CrossRefGoogle Scholar
  13. K. Binder, D. Stauffer, V. Wildpaner: Acta Met. (1978)Google Scholar
  14. 13.8
    See Ref. [13.1], first citation, for a calculation of μGoogle Scholar
  15. 13.9
    P. Wynblatt, R.C. Ku: Surf. Sci. 65, 511 (1977);CrossRefGoogle Scholar
  16. F.F. Abraham, N.-H. Tsai, G.M. Pound: Surf. Sci. 83, 406 (1979)CrossRefGoogle Scholar
  17. 13.10
    W.K. Burton, N. Cabrera: Disc. Faraday Soc. 5, 33 (1949)CrossRefGoogle Scholar
  18. 13.11
    K.A. Jackson: In Liquid Metals and Solidification ( American Society for Metals, Cleveland 1958 ) p. 174Google Scholar
  19. 13.12
    G.H. Gilmer: Science 208, 355 (1980)CrossRefGoogle Scholar
  20. 13.13
    J.D. Weeks, G.H. Gilmer, H.J. Leamy: Phys. Rev. Lett. 31, 549 (1973)CrossRefGoogle Scholar
  21. 13.14
    J.W. Cahn, J.E. Hilliard: J. Chem. Phys. 28, 258 (1958);CrossRefGoogle Scholar
  22. J.W. Cahn: J. Chem. Phys. 30, 1121 (1959); andGoogle Scholar
  23. D.E. Temkin: Sov. Phys. Crystallogr. 14, 344 (1969)Google Scholar
  24. 13.15
    S.T. Chui, J.D. Weeks: Phys. Rev. 814, 4978 (1976)Google Scholar
  25. 13.16
    H. van Beijeren: Phys. Rev. Lett. 38, 993 (1977);CrossRefGoogle Scholar
  26. H.J.F. Knops: Phys. Rev. Lett. 39, 766 (1977)CrossRefGoogle Scholar
  27. 13.17
    G.H. Gilmer, J.D. Weeks: J. Chem. Phys. 68, 950 (1978)CrossRefGoogle Scholar
  28. 13.18
    Approximation methods for calculating the properties of the Ising model, including the extent of the miscibility gap are discussed by T.L. Hill: In An Introduction to Statistical Mechanics (Addison-Wesley, Reading 1960) Chap. 14Google Scholar
  29. 13.19
    A first-order transition was observed first by J.C. Shelton, H.R. Patil, J.M. Blakeley: Surf. Sci. 43 493 (1974), for carbon segregation to Ni111 surface; and by J.C. Hamilton, J.M. Blakeley: J. Vac. Sci. Technol. 15 559 (1978), for carbon on Pt111. Also P.C. Bettler, D.H. Bennum, C.M. Case: Surf. Sci. 44, 360 (1974), noted surface phase changes for carbon and silicon on tungstenGoogle Scholar
  30. 13.20
    A simple mean-field theory for segregation that exhibited a first-order transition in the surface layer was presented by C.R. Helms: Surf. Sci. 69, 689 (1977); and a diffuse-interface model was described in a paper on critical-point wetting of fluids by J.W. C.hn: J. Chem. Phys. 66, 3667 (1977)Google Scholar
  31. 13.21
    N. Cabrera: Z. Electrochemie 56, 294 (1952)Google Scholar
  32. 13.22
    F.C. Frank: Discuss. Faraday Soc. 5, 48 (1949)CrossRefGoogle Scholar
  33. 13.23
    Reproducible transient growth rates have been measured after the application of a potential during electrodeposition. See R. Roussinova, E. Budevski: J. Electrochem. Soc. 119, 1346 (1972)Google Scholar
  34. 13.24
    G.H. Gilmer: J. Cryst. Growth 49, 465 (1980)CrossRefGoogle Scholar
  35. 13.25
    G.H. Gilmer: J. Cryst. Growth 42, 3 (1977)CrossRefGoogle Scholar
  36. 13.26
    A.A. Chernov: Sov. Phys.-Uspekhi 13, 101 (1970). A model for the trapping of impurities during crystal growth from the melt is given by K.A. Jackson, G.H. Gilmer, H.J. Leamy: In Laser and Electron Beam Processing of Materials, ed. by C.W. White, P.S. Peercy (Academic, New York 1982). Ising model simulations for laser-annealed silicon are described by G.H. Gilmer: [Ref. 13.5], p. 249Google Scholar
  37. 13.27
    L.S. Hollister: Am. Mineral. 55, 742 (1970)Google Scholar
  38. 13.28
    A.A. Chernov, J. Loomis: J. Phys. Chem. Solids 28, 2185 (1967). Also see A.A. Chernov: [Ref. 13.26]Google Scholar
  39. 13.29
    E.M. Gyorgy, M.D. Sturge, L.G. van Uitert, E.J. Heilner, W.H. Grodkiewicz: J. Appl. Phys. 44, 438 (1973);CrossRefGoogle Scholar
  40. R. Wolfe, R.C. Le Craw, S.L. Blank, R.D. Pierce: Appl. Phys. Lett. 29, 815 (1976)CrossRefGoogle Scholar
  41. 13.30
    G.H. Gilmer, K.A. Jackson: In Crystal Growth and Materials, ed. by E. Kaldis, H.J. Scheel ( North-Holland, Amsterdam 1977 ) p. 80Google Scholar
  42. 13.31
    M. Volmer: Die Kinetik der Phasenbildung ( Steinkopf, Dresden 1939 );Google Scholar
  43. N. Stranski: Z. Physik Chem. 136, 259 (1928)Google Scholar
  44. 13.32
    J.Q. Broughton, G.H. Gilmer, K.A. Jackson: Phys. Rev. Lett. 49, 1496 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • G. H. Gilmer

There are no affiliations available

Personalised recommendations