An Atomic View of Crystal Growth

  • G. Ehrlich
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 35)


Studies of crystal growth have been of scientific interest at least since the time of Gibbs, but an atomic view of the subject really began to emerge in the 1920s, through the work of Volmer, Stranski, and Kossel [12.1]. From these early investigations, largely based on visual observations or on studies with the light microscope, it became evident that growth from the vapor occurs in a series of steps, shown in Fig.12.1. Atoms from the vapor are captured at a crystal surface on colliding with it. To become part of the crystal they must still reach a growth site, that is a kink in a lattice step. At low supersaturations of the vapor, incorporation can occur only if the lifetime of the adatom on the flat terraces is long enough for the atom to diffuse to a step prior to evaporation. At higher vapor pressures the concentration of adatoms on the flat may be large enough to allow the creation of new nuclei, at which growth can then proceed [12.2]. All of these processes have been nicely illustrated in the Monte Carlo simulations reviewed by Gilmer [12.3]. The creation of epitaxial layers of a foreign material on a crystalline substrate is, however, more complicated [12.4]. As is stressed in van der Merwe’s review [12.5], epitaxy is significantly affected by the strength of the interactions between adatoms as well as between adatoms and substrate. Nevertheless, the atomic events in both crystal and overlayer growth involve the same steps:


migration of adatoms,

atomic incorporation,

and formation of surface clusters.


Crystal Growth Growth Site Atomic Behavior Tungsten Atom Field Evaporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 12.1
    For a sketch of the history, see F.C. Frank: Adv. Phys. 1, 91 (1952)Google Scholar
  2. 12.2
    Crystal growth theories are reviewed by J.D. Weeks, G.H. Gilmer: Adv. Chem. Phys. 40, 157 (1979);Google Scholar
  3. H. Müller-Krumbhaar: In Current Topics in Materials Science, Vol. 1, ed. by E. Kaldis ( North Holland, Amsterdam 1978 ) p. 1Google Scholar
  4. 12.3
    G.H. Gilmer: This volumeGoogle Scholar
  5. 12.4
    The subject has been examined by R. Kern, G. Lelay, J J. Metois: In Current Topics in Materials Science, Vol. 3, ed. by E. Kaidis ( North-Holland, Amsterdam 1979 ) p. 131Google Scholar
  6. 12.5
    J.H. Van der Merwe: This volumeGoogle Scholar
  7. 12.6
    For further details see G. Ehrlich: In Proceedings of the 9th International Vacuum Congress and 5th International Conf. on Solid Surfaces, ed. by J.L. de Segovia ( ASEVA, Madrid 1983 ) p. 3Google Scholar
  8. 12.7
    The technique of field ion microscopy is described by E.W. Müller, T.T. Tsong: Field Ion Microscopy Principles and Applications ( American Elsevier, New York 1969 );Google Scholar
  9. K.M. Bowkett, D.A. Smith: Field Ion Microscopy (North-Holland, Amsterdam 1970). For a recent review, see J.A. Panitz: J. Phys. E15, 1281 (1982)Google Scholar
  10. 12.8
    M. Isaacson, D. Kopf, M. Utlaut, N.W. Parker, A.V. Crewe: Proc. Natl. Acad. Sci. USA 74, 1802 (1977);CrossRefGoogle Scholar
  11. A.V. Crewe: Science 221, 325 (1983)CrossRefGoogle Scholar
  12. 12.9
    K. Takayanagi: Jpn. J. Appl. Phys. 22, L4 (1983)CrossRefGoogle Scholar
  13. 12.10
    M.S. Isaacson, J. Langmore, N.W. Parker, D. Kopf, M. Utlaut: Ultra-microscopy 1, 359 (1976);CrossRefGoogle Scholar
  14. M. Utlaut: Phys. Rev. B22, 4650 (1980)CrossRefGoogle Scholar
  15. 12.11
    K. Takayanagi: Ultramicroscopy 8, 145 (1982)CrossRefGoogle Scholar
  16. 12.12
    M.J. Yacaman: This volumeGoogle Scholar
  17. 12.13
    G. Binniq, H. Rohrer, Ch. Gerber, E. Weibel: Appl. Phys. Lett. 40, 178 (1982);CrossRefGoogle Scholar
  18. G. Binniq, H. Rohrer, Ch. Gerber, E. Weibel: Phys. Rev. Lett. 49, 57 (1982);CrossRefGoogle Scholar
  19. G. Binniq, H. Rohrer, Ch. Gerber, E. Weibel: Phys. Rev. Lett. 50, 120 (1983);CrossRefGoogle Scholar
  20. G. Binnig, H. Rohrer: Heiv. Phys. Acta 55, 726 (1982);Google Scholar
  21. G. Binnig, H. Rohrer: Phys. B1. 39, 16 (1983);Google Scholar
  22. G. Binnig, H. Rohrer: Surf. Sci. 126, 236 (1983)CrossRefGoogle Scholar
  23. 12.14
    R. Young, J. Ward, F. Scire: Rev. Sci. Instrum. 43, 999 (1972)CrossRefGoogle Scholar
  24. 12.15
    M.W. Roberts, C.S. McKee: Chemistry of the Metal-Gas Interface (Clarendon, Oxford 1978) Sect. 8. 2Google Scholar
  25. 12.16
    G. Ehrlich: Brit. J. Appl. Phys. 15, 349 (1964).CrossRefGoogle Scholar
  26. T. Gurney, Jr., F. Hutchinson, R.D. Young: J. Chem. Phys. 42 3939 (1965); andGoogle Scholar
  27. R.D. Young, D.C. Schubert: J. Chem. Phys. 42, 3943 (1965)CrossRefGoogle Scholar
  28. 12.17
    G. Ehrlich, C.F. Kirk: J. Chem. Phys. 48, 1465 (1968)CrossRefGoogle Scholar
  29. 12.18
    E.W. Plummer, T.N. Rhodin: J. Chem. Phys. 49, 3479 (1968)CrossRefGoogle Scholar
  30. 12.19
    R. Gomer, L.W. Swanson: J. Chem. Phys. 38, 1613 (1963);CrossRefGoogle Scholar
  31. T.T. Tsong, E.W. Müller: Phys. Stat. Solidi A1, 513 (1970);CrossRefGoogle Scholar
  32. R.G. Forbes: Surf. Sci. 102, 255 (1981);CrossRefGoogle Scholar
  33. U.R. Kingham: Vacuum 32, 471 (1982)CrossRefGoogle Scholar
  34. 12.20
    For reviews of the subject, see G. Ehrlich, K. Stolt: Annu. Rev. Phys. Chem. 31, 603 (1980); alsoGoogle Scholar
  35. D.W. Bassett: In Surface Mobilities on Solid Materials, ed. by Vu Thien Binh ( Plenum, New York 1983 ) p. 63Google Scholar
  36. 12.21
    K. Stolt, W.R. Graham, G. Ehrlich: J. Chem. Phys. 65, 3206 (1976)CrossRefGoogle Scholar
  37. 12.22
    G. Ehrlich, F.G. Hudda: J. Chem. Phys. 44 1039 (1966); alsoGoogle Scholar
  38. W.R. Graham, G. Ehrlich: Thin Solid Films 25, 85 (1975)CrossRefGoogle Scholar
  39. 12.23
    G. Ehrlich: J. Vac. Sci. Technol. 17, 9 (1980)CrossRefGoogle Scholar
  40. 12.24
    G. Ayrault, G. Ehrlich: J. Chem. Phys. 60, 281 (1974)CrossRefGoogle Scholar
  41. 12.25
    D.W. Bassett, P.R. Weber: Surf. Sci. 70, 520 (1978)CrossRefGoogle Scholar
  42. 12.26
    John D. Wrigley, Jr.: Surface Diffusion by an Atomic Exchange Mechanism, Coordinated Science Lab., Univ. of Illinois at Urbana, Report T-115, July 1982;Google Scholar
  43. J.D. Wrigley, G. Ehrlich: Phys. Rev. Lett. 44, 661 (1980)CrossRefGoogle Scholar
  44. 12.27
    For early work of this type, see M. Drechsler: Z. Elektrochem. 58, 327 (1954)Google Scholar
  45. 12.28
    D.W. Bassett: Surf. Sci. 53, 74 (1975);CrossRefGoogle Scholar
  46. D.W. Bassett, C.K. Chung, D. Tice: Vide 176, 39 (1975)Google Scholar
  47. 12.29
    S.-C. Wang, T.T. Tsong: Surf. Sci. 121, 85 (1982)CrossRefGoogle Scholar
  48. 12.30
    H.-W. Fink, G. Ehrlich: 43rd Annual Conference on Physical Electronics, Santa Fe, New Mexico, June 1983Google Scholar
  49. 12.31
    K. Stolt, J.D. Wrigley, G. Ehrlich: J. Chem. Phys. 69, 1151 (1978)CrossRefGoogle Scholar
  50. 12.32
    D.A. Reed, G. Ehrlich: Philos. Mag. 32, 1095 (1975)CrossRefGoogle Scholar
  51. 12.33
    D.A. Reed: Studies of Surface Diffusion, Ph.D. Thesis, Univ. of Illinois at Urbana, 1980Google Scholar
  52. 12.34
    K. Stolt, G. Ehrlich: Abstracts, TMS-AIME Fall Meeting, Milwaukee, WI, September 1979Google Scholar
  53. 12.35
    H.-W. Fink, G. Ehrlich: 42nd Annual Conference on Physical Electronics, Atlanta, GA, June 1982Google Scholar
  54. 12.36
    D.W. Bassett, D.R. Tice: In The Physical Basis of Heterogeneous Catalysis, ed. by E. Drauglis and R.I. Jaffee (Plenum, New York 1975), p. 231. It should be noted that the presence of clusters in FIM images was first noted by D.W. Bassett: Surf. Sci. 23, 240 (1970)Google Scholar
  55. 12.37
    H.-W. Fink: Atomistik der Monolagenbildung, Ph.D. Thesis, Technical University Munich, 1982Google Scholar
  56. 12.38
    D.W. Bassett: Thin Solid Films 48, 237 (1978)CrossRefGoogle Scholar
  57. 12.39
    H.-W. Fink, G. Ehrlich: Surf. Sci. 110, L611 (1981)CrossRefGoogle Scholar
  58. 12.40
    T.T. Tsong, R. Casanova: Phys. Rev. Lett. 47, 113 (1981)CrossRefGoogle Scholar
  59. 12.41
    H.-W. Fink: Private communicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • G. Ehrlich

There are no affiliations available

Personalised recommendations