Skip to main content

Part of the book series: Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology ((HDBRADIOL,volume 20))

Zusammenfassung

Werden biologische Objekte mit Strahlen unterschiedlicher Art (Photonen oder Teilchen unterschiedlicher Ladung) oder verschiedener Energie bestrahlt, so kann die Wirkung bei gleicher absorbierter Dosis unterschiedlich stark ausgeprägt sein, d.h. um gleiche Wirkung zu erzielen, sind unterschiedlich hohe Strahlendosen erforderlich. Aufgrund der großen Fortschritte auf dem Gebiet der Beschleuniger-Technologie steht heutzutage dem strahlenbiologischen Experimentator eine breite Palette verschiedenster Strahlenarten zur Verfügung, die Röntgenstrahlen mit Energien von 1,5 keV bis zu mehreren GeV, Neutronen sowie geladene Teilchen von Elektronen bis zu beschleunigten Uran-Kernen umfaßt. Entsprechend breit ist auch das Spektrum der strahlenbiologischen Befunde, die bisher nach Einwirkung verschiedener Strahlenarten an einer Vielzahl biologischer Objekte erhoben wurden. Deshalb erschien es angebracht, den strahlenbiologischen Besonderheiten dicht ionisierender Strahlen im Rahmen dieses Handbuches ein separates Kapitel zu widmen. Da der Umfang dieses Beitrags vorgegeben war, wurde bewußt darauf verzichtet, die gesamte Strahlenbiologie für dicht ionisierende Strahlen in komprimierter Form abzuhandeln. Denn bei der Menge der vorliegenden experimentellen Daten wäre daraus im wesentlichen eine Aufzählung diverser Befunde geworden, was die Lesbarkeit stark eingeschränkt hätte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Barendsen GW (1962) Dose-survival curves of human cells in tissue culture irradiated with alpha-, beta-, 20-kV X- and 220 kV X-irradiation. Nature 193:1153–1155

    Article  PubMed  CAS  Google Scholar 

  • Barendsen GW (1968) Responses of cultured cells, tumours and normal tissues to radiations of different linear energy transfer. In: Ebert M, Howard A (eds) Current topics in radiation research, vol. IV. North-Holland, Amsterdam, pp 293–356

    Google Scholar 

  • Barendsen GW, Koot CJ, Kersen GR van, Bewley DK, Field SB, Parnell CJ (1966) The effect of oxygen on impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET. Int J Radiat Biol 10:317–327

    Google Scholar 

  • Barendsen GW, Broerse JJ, Breur K (1979) High-LET radiations in clinical radiotherapy. Perga-mon Press, Oxford

    Google Scholar 

  • Berry RJ (1970) Survival of murine leukemia cells in vivo after irradiation in vitro under aerobic and hypoxic conditions with monoenergetic accelerated charged particles. Radiat Res 44:237–247

    Article  PubMed  CAS  Google Scholar 

  • Bewley DK (1968) A comparison of the response of mammalian cells to fast neutrons and charged particle beams. Radiat Res 34:446–458

    Article  PubMed  CAS  Google Scholar 

  • Bewley DK (1970) Fast neutron beams for therapy. In: Ebert M, Howard A (eds) Current topics in radiation research, vol. VI. North-Holland, Amsterdam, pp 249–292

    Google Scholar 

  • Bird RP, Burki HJ (1975) Survival of synchronized Chinese hamster cells exposed to radiation of different linear-energy transfer. Int J Radiat Biol 27:105–120

    Article  CAS  Google Scholar 

  • Blakely EA, Tobias CA, Yang TCH, Smith KC, Lyman JT (1979) Inactivation of human kidney cells by high-energy monoenergetic heavy-ion beams. Radiat Res 80:122–160

    Article  PubMed  CAS  Google Scholar 

  • Blakely EA, Tobias CA, Ngo FQH, Curtis SB (1980) Physical and cellular radiobiological properties of heavy ions in relation to cancer therapy applications. In: Pirruccello MC, Tobias CA (eds) Biological and medical research with accelerated heavy ions at the bevalac, 1977–1980. LBL-11220 report, Berkeley

    Google Scholar 

  • Booz J, Fidorra J (1981) Microdosimetric investigations on collimated fast neutron beams for radiation therapy: II. The problem of radiation quality and RBE. Phys Med Biol 26:43–56

    Article  PubMed  CAS  Google Scholar 

  • Brustad T (1961) Molecular and cellular effects of fast charged particles. Radiat Res 15:139–158

    Article  CAS  Google Scholar 

  • Catterall M, Bewley DK (1979) Fast neutrons in the treatment of cancer. Academic Press, London

    Google Scholar 

  • Chapman JD (1980) Biophysical models of mammalian cell inactivation by radiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven Press, New York, pp 21–32

    Google Scholar 

  • Chapman JD, Urtasun RC, Blakely EA, Smith KC, Tobias CA (1978) Hypoxic cell sensitizers and heavy charged-particle radiations. Br J Cancer [Suppl. III] 37:184–188

    CAS  Google Scholar 

  • Chatterjee A, Magee JL (1978) Relationship of the track structure of heavy particles to the physical distribution and chemical effects of radicals. In: Booz J, Ebert HG (eds) Proceedings of the sixth symposium on microdosimetry. Commission of the European Communities, Brüssel, pp 283–294

    Google Scholar 

  • Chatterjee A, Schaefer HJ (1976) Microdosimetric structure of heavy ion tracks in tissue. Radiat Environ Biophys 13:215–227

    Article  PubMed  CAS  Google Scholar 

  • Curtis SB (1970) The effect of track structure on OER at high LET. In: Charged particle tracks in solids an liquids. The Institute of Physics and the Physical Society Conference Series Nr 8, London, pp 140–142

    Google Scholar 

  • Curtis SB (1979) The biological properties of high-energy charged particles. In: Okada S, Imamura M, Terashima T, Yamaguchi H (eds) Radiation research. Japanese Association for Radiation Research, Tokyo, pp 780–787

    Google Scholar 

  • Denekamp J, Morris C, Field SB (1977) The response of a transplantable tumor to fractionated irradiation. Part III. Fast neutrons plus the radiosensitizer Ro–07–0582. Radiat Res 70:425–432

    Article  PubMed  CAS  Google Scholar 

  • Dertinger H, Jung H (1969) Molekulare Strahlenbio- logie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dertinger H, Lücke-Huhle C, Schlag H, Weibezahn KF (1976) Negative pion irradiation of mammalian cells. I. Survival characteristics of monolayers and spheroids of chinese hamster lung cells. Int J Radiat Biol 29: 271–277

    Article  CAS  Google Scholar 

  • Elkind MM (1970) Damage and repair processes relative to neutron (and charged particle) irradiation. In: Ebert M, Howard A (eds) Current topics in radiation research, vol VII. North-Holland, Amsterdam, pp 1–44

    Google Scholar 

  • Elkind MM, Whitmore GF (1967) The radiobiology of cultured mammalian cells. Gordon and Breach, New York

    Google Scholar 

  • Elkind MM, Sutton-Gilbert H, Moses WB, Alescio T, Swain RW (1965) Radiation response of mam- malian cells grown in culture. V. Temperature dependence of the repair of X-ray damage in surviving cells (aerobic and hypoxic). Radiat Res 25:359–376

    Google Scholar 

  • Essen CF von, Blattmann H, Crawford JF, Fessenden P, Pedroni E, Perret C, Salzmann M, Shortt K, Walder E (1982) The piotron: Initial performance, preparation and experience with pion therapy. Int J Radiat Oncol Biol Phys 8:1499–1509

    Google Scholar 

  • Field SB, Hornsey S (1975) The RBE for fast neutrons: The link between animal experiments and clinical practice. In: Nygaard OF, Adler HI, Sinclair WK (eds) Radiation research. Academic Press, New York, pp 1125–1135

    Google Scholar 

  • Field SB, Hornsey S (1979) Aspects of OER and RBE relevant to neutron therapy. In: Lett JT, Adler H (eds) Advances in radiation biology, vol 8. Academic Press, New York, pp 1–49

    Google Scholar 

  • Fowler JF (1981) Nuclear particles in cancer treatment. Hilger, Bristol

    Google Scholar 

  • Gragg RL, Humphrey RM, Thames HD, Meyn RE (1978) The response of Chinese hamster ovary cells to fast neutron radiotherapy beams. III. Variation in relative biological effectiveness with position in the cell cycle. Radiat Res 76:283–291

    Article  PubMed  CAS  Google Scholar 

  • Gray LH (1957) Oxygenation in radiotherapy. 1. Radiobiological considerations. Br J Radiol 30:403–406

    Article  PubMed  CAS  Google Scholar 

  • Guichard M, Gosse C, Malaise EP (1977) Survival curve of a human melanoma in nude mice. J Natl Cancer Inst 58:1665–1669

    PubMed  CAS  Google Scholar 

  • Hall EJ (1969) Radiobiological measurements with 14-MeV neutrons. Br J Radiol 42: 805–813

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ (1978) Radiobiology for the radiologist, 2nd edn. Harper & Row, Hagerstown

    Google Scholar 

  • Hall EJ, Gross W, Dvorak RF, Kellerer AM, Rossi HH (1972) Survival curves and age response function for Chinese hamster cells exposed to X-rays or high LET alpha-particles. Radiat Res 52:88–98

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ, Roizin-Towle L, Theus RB, August LS (1975) Radiobiological properties of high energy cyclotron-produced neutrons used for radiotherapy. Radiology 117:173–178

    Google Scholar 

  • Hall EJ, Kellerer AM, Friede H (1982) Dependence on neutron energy of the OER and RBE. Int J Radiat Oncol Biol Phys 8:1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Hug O (1974) Medizinische Strahlenkunde. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hug O, Kellerer AM (1966) Stochastik der Strahlenwirkung. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hussey DH, Fletcher GH, Cadero JB (1974) Experience with fast neutron therapy using the Texas A & M variable energy cyclotron. Cancer 34:65–77

    Article  PubMed  CAS  Google Scholar 

  • ICRP 26 (1978) Empfehlungen der Internationalen Strahlenschutzkommission. ICRP-Veröffentlichungen, Heft 26. Fischer, Stuttgart

    Google Scholar 

  • ICRU 16 (1970) International commission on radiation units and measurements. Linear energy transfer. ICRU report 16. Washington

    Google Scholar 

  • Jung H (1965) Zur biologischen Wirksamkeit elastischer Kernstöße. I. Inaktivierung von Ribonuclease durch langsame Protonen. Z Naturforsch [B] 20:764–772

    Google Scholar 

  • Jung H (1967) Inactivation of ribonuclease by elastic nuclear collisions. Radiat Res [Suppl] 7: 64–73

    Article  CAS  Google Scholar 

  • Jung H, Kürzinger K (1969) Zur biologischen Wirksamkeit elastischer Kernstöße. III. Einwirkung von langsamen Protonen auf infektiöse DNS des Bakteriophagen 0X174. Z Naturforsch [B] 24:328–332

    CAS  Google Scholar 

  • Jung H, Zimmer KG (1966) Some chemical and biological effects of elastic nuclear collisions. In: Ebert M, Howard A (eds) Current topics in radiation research, vol II. North-Holland, Amsterdam, pp 69–128

    Google Scholar 

  • Jung H, Zimmer KG (1974) Physikalische und biologische Grundlagen einer Anwendung von π-Mesonen, Neutronen und geladenen Teilchen in der Strahlentherapie. Roentgenblätter 27:381–402

    CAS  Google Scholar 

  • Kallman RF (1972) The phenomenon of reoxygenation and its implications for fractionated radiotherapy. Radiology 105:135–142

    PubMed  CAS  Google Scholar 

  • Kaplan HS (1974) On the relative importance of hypoxic cells for the radiotherapy of human tumours. Eur J Cancer 10:275–280

    Article  PubMed  CAS  Google Scholar 

  • Kellerer AM, Rossi HH (1972) The theory of dual radiation action. In: Ebert M, Howard A (eds) Current topics in radiation research, vol 8. North-Holland, Amsterdam, pp 85–158

    Google Scholar 

  • Kellerer AM, Hall EJ, Rossi HH, Teedla P (1976) RBE as a function of neutron energy. II. Statistical analysis. Radiat Res 65:172–186

    Article  PubMed  CAS  Google Scholar 

  • Kiefer J (1981) Biologische Strahlenwirkung. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Koehler AM, Preston WM (1972) Protons in radiation therapy. Radiology 104:191–195

    PubMed  CAS  Google Scholar 

  • Kraft G, Kraft-Weyrather W, Meister H, Miltenburger HG, Schuber M, Wulf H (1983) Inactivation of mammalian cells exposed to heavy charged particle beams. In: Broerse JJ, Barendsen GW, Kal HB, Kogel AJ van der (eds) Proceedings of the seventh international congress of radiation research. Nijhoff, Amsterdam, pp D4–16

    Google Scholar 

  • Larsson B (1961) Pre-therapeutic physical experiments with high energy protons. Br J Radio] 34:143–151

    Article  CAS  Google Scholar 

  • Larsson B (1967) Radiobiological properties of beams of high-energy protons. Radiat Res [Suppl] 7:304–311

    Article  CAS  Google Scholar 

  • Lücke-Huhle C, Blakely EA, Chang P, Tobias CA (1979 a) Drastic G2-arrest in mammalian cells after irradiation with heavy ion beams. Radiat Res 79:97–112

    Google Scholar 

  • Lücke-Huhle C, Blakely EA, Tobias CA (1979 b) The influence of intercellular contact on mammalian cell survival after heavy-ion irradiation. In: Barendsen GW, Broerse JJ, Breur K (eds) High-LET radiation in clinical radiotherapy. Pergamon Press, Oxford, pp 227–228

    Google Scholar 

  • Menzel HG, Schuhmacher H (1981) Comparison of microdosimetric characteristics of four fast neutron therapy facilities. In: Booz J, Ebert HG, Hartfiel HD (eds) Proceedings of the 7th Symposium on Microdosimetry. EURATOM Publication 7147, Brüssel, pp 1217

    Google Scholar 

  • Munson RJ, Neary GJ, Bridges BA, Preston RJ (1967) The sensitivity of Escherichia coli to ionizing particles of different LETs. Int J Radiat Biol 13:205–224

    Google Scholar 

  • Neufeld J, Snyder WS (1961) Estimates of energy dissipation by heavy charged particles in tissue. In: Selected Topics in Radiation Dosimetry. Internat Atomic Energy Agency, Wien, pp 35–44

    Google Scholar 

  • Ngo FQH, Utsumi H, Han A, Elkind MM (1979) Sublethal damage repair: Is it independent of radiation quality? Int J Radiat Biol 36:521–530

    Article  CAS  Google Scholar 

  • Painter RB (1980) The role of DNA damage and repair in cell killing induced by ionizing radiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven Press, New York, pp 59–68

    Google Scholar 

  • Pirruccello MC, Tobias CA (1980) Biological and medical research with accelerated heavy ions at the bevalac, 1977–1980. LBL-11220 report, Berkeley

    Google Scholar 

  • Powers WE, Tolmach LJ (1963) A multicomponent X-ray survival curve for mouse lymphoma sarcoma cells irradiated in vivo. Nature 197: 710–711

    Article  PubMed  CAS  Google Scholar 

  • Raju MR (1980) Heavy particle radiotherapy. Academic Press, New York

    Google Scholar 

  • Raju MR, Richman C (1972) Negative pion radiotherapy: Physical and radiobiological aspects. In: Ebert M, Howard A (eds) Current topics in radiation research quarterly, vol 8. North-Holland, Amsterdam, pp 159–233

    Google Scholar 

  • Raju MR, Tobey RA, Jett JH, Walters RA (1975) Age response for line CHO chinese hamster cells exposed to X-irradiation and alpha particles from plutonium. Radiat Res 63:422–433

    Article  PubMed  CAS  Google Scholar 

  • Raju MR, Amols HI, Dicello JF, Howard J, Lyman JT, Koehler AM, Graves R, Smathers JB (1978) A heavy particle comparative study. Part I: Depth-dose distributions. Br J Radiol 51:699–703

    Article  PubMed  CAS  Google Scholar 

  • Raju MR, Bain E, Carpenter SG, Jett J, Walters RA, Howard J, Powers-Risius P (1980) Effects of argon ions on synchronized chinese hamster cells. Radiat Res 84:152–157

    Google Scholar 

  • Ritter MA, Cleaver JE, Tobias CA (1977) High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature 266:653–655

    Article  PubMed  CAS  Google Scholar 

  • Rossi HH (1959) Specification of radiation quality. Radiat Res 10: 522–531

    Article  PubMed  CAS  Google Scholar 

  • Rossi HH (1979) The role of microdosimetry in ra- diobiology. Radiat Environ Biophys 17:29–40

    Article  PubMed  CAS  Google Scholar 

  • Rossi HH, Rosenzweig W (1955) A device for the measurement of dose as a function of specific ionization. Radiology 64: 404–410

    PubMed  CAS  Google Scholar 

  • Schmidt R, Hess A (1982) Spectroscopic intercomparison at the German neutron therapy centers. Int J Radiat Oncol Biol Phys 8:1511–1515

    Article  PubMed  CAS  Google Scholar 

  • Sinclair WK (1968) Cyclic X-ray responses in mam- malian cells in vitro. Radiat Res 33: 620–643

    Article  PubMed  CAS  Google Scholar 

  • Sinclair WK (1969) Dependence of radiosensitivity upon cell age. In: Time and Dose Relationships in Radiation Biology as Applied to Radiotherapy (Carmel Conference 1969) Brookhaven National Laboratory report BNL-50203, Brookhaven, pp 97–107

    Google Scholar 

  • Skarsgard LD, Kihlman BA, Parker L, Pujara CM, Richardson S (1967) Survival, chromosome abnormalities, and recovery in heavy-ion-and X-irradiated mammalian cells. Radiat Res [Suppl] 7:208–221

    Article  CAS  Google Scholar 

  • Stone RS (1948) Neutron therapy and specific ionization. Am J Roentgenol 59:771–785

    CAS  Google Scholar 

  • Streffer C (1969) Strahlen-Biochemie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Streffer C (1980) Biologische Grundlagen der Strahlentherapie. In: Scherer E (Hrsg) Strahlentherapie. Springer, Berlin Heidelberg New York, pp 172–230

    Google Scholar 

  • Suit H, Maeda M (1966) Oxygen effect factor and tumor volume in the C3H mouse mammary carcinoma. Am J Roentgenol 96:177–182

    CAS  Google Scholar 

  • Terasima T, Tomach LJ (1963) Variation in several responses of HeLa cells to X-irradiation during the division cycle. Biophys J 3:11–33

    Google Scholar 

  • Todd PW (1964) Reversible and irreversible effects of ionizing radiations on the reproductive integrity of mammalian cells cultured in vitro. Thesis, UCLR-11614 report, Berkeley

    Google Scholar 

  • Todd PW (1968) Fractionated heavy ion irradiation of cultured human cells. Radiat Res 34:378–389

    Article  PubMed  CAS  Google Scholar 

  • Trott KR (1972) Strahlenwirkungen auf die Vermehrung von Säugetierzellen. In: Hug O, Zuppinger A (Hrsg) Handbuch der medizinischen Radiologie, Bd II/Teil 3. Springer, Berlin Heidelberg New York, S 43–125

    Google Scholar 

  • Unscear (1982) United nations scientific committee on the effects of atomic radiation. Ionizing radiation: Sources and biological effects (Report to the general assembly). United Nations, New York

    Google Scholar 

  • Withers HR, Suit HD (1974) Is oxygenation important in the radiocurability of human tumors? In: Friedman M (ed) Biological and clinical basis of radiosensitivity. Thomas, Springfield, pp 548–567

    Google Scholar 

  • Withers HR, Thames HD, Peters LJ (1982) Biological bases for high RBE values for late effects of neutron irradiation. Int J Radiat Oncol Biol Phys 8:2071–2076

    Article  PubMed  CAS  Google Scholar 

  • Zywietz F, Menzel HG, Beuningen D van, Schmidt R (1982) A biological and microdosimetric inter-comparison of 14 MeV d-T neutrons and 6 MeV cyclotron neutrons. Int J Radiat Biol 42:223–228

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Jung, H. (1985). Biologische Wirkung dicht ionisierender Teilchenstrahlen. In: Heuck, F., Scherer, E. (eds) Strahlengefahrdung und Strahlenschutz / Radiation Exposure and Radiation Protection. Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82229-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82229-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82230-8

  • Online ISBN: 978-3-642-82229-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics