Skip to main content

Experimentelle Strahlenfolgen am Hirngewebe

  • Chapter
  • 51 Accesses

Part of the book series: Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology ((HDBRADIOL,volume 20))

Zusammenfassung

Die strahlenbiologische Reaktion des Hirngewebes wird bestimmt durch, vom Untersucher wenig beeinflußbare, biologische Vorgänge in den Zellen und in ihrer Umgebung und durch planbare physikalische Parameter der Strahlung. Während der prä- und postnatalen Phase sind die biologischen Faktoren noch schwerer überschaubar als beim erwachsenen Tier oder Menschen, weil teilungsfähige, ramifizierende und im Stoffwechsel labile Zellen strahlenbiologisch teils empfindlicher, teils resistenter reagieren. Im nachfolgenden Kapitel bleiben perinatale Veränderungen des zentralen Nervensystems deshalb unberücksichtigt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams JH, Brierley JB, Connor RC, Treip CS (1966) The effects of systemic hypotension upon the human brain. Clinical and neuropathological observations in 11 cases. Brain 89: 235–268

    Article  PubMed  CAS  Google Scholar 

  • Adams JH, Brierley JB, Connor RC, Treip CS (1966) The effects of systemic hypotension upon the human brain. Clinical and neuropathological observations in 11 cases. Brain 89: 235–268

    Article  PubMed  CAS  Google Scholar 

  • Albin MSR, White RJ, Locke GS, Massopust LC, Kretschner HE (1967) Localised spinal cord hypothermia — anaestetic effects and application to spinal cord injury. Anaesth Analg 46: 8–15

    Article  CAS  Google Scholar 

  • Alpers BJ, Pancoast HK (1933) The effect of irradiation on normal and neoplastic brain tissue. Amer J Cancer 17: 7

    Google Scholar 

  • Andres KH (1963a) Elektronenmikroskopische Untersuchungen über Strukturveränderungen in den Kernen von Spinalganglienzellen der Ratte nach Bestrahlung mit 185 MeV-Protonen. Z Zellforsch 60: 560–581

    Article  Google Scholar 

  • Arnold A, Bailey P (1954a) Alterations in the glial cells following irradiation of the brain in primates. Archs Path 57: 383–391

    CAS  Google Scholar 

  • Arnold A, Bailey P, Harvey RA, Haas LL, Laughlin JS (1954b) Changes in the C.N.S. following irradiation with 23-MeV X-rays from the Betatron. Radiol 62: 37

    CAS  Google Scholar 

  • Arnold A, Bailey P, Laughlin JS (1954c) Effects of betatron radiations on the brain of primates. Neurology (Minneap) 4: 165–178

    CAS  Google Scholar 

  • Arnold A, Bailey P, Harvey RA (1954d) Intolerance of the primate brain stem and hypothalamus to conventional and high energy radiations. Neurology (Minn) 4: 575 )

    CAS  Google Scholar 

  • Asbell SO, Kramer S (1971) Oxygen effect on the production of radiation-induced myelitis in rats. Radiology 98: 678–681

    PubMed  CAS  Google Scholar 

  • Asscher AW, Anson SG (1962) Arterial hypertension and irradiation damage to the nervous system. Lancet 1343–1346

    Google Scholar 

  • Asscher AW, Wilson C, Anson SG (1961) Sensitisation of bloodvessels to hypertensive damage by X-irradiation. Lancet 580–583

    Google Scholar 

  • Assenmacher DR, Ducker TB (1971) Experimental traumatic paraplegia, The vascular and pathological changes seen in reversible and irreversible spinal cord lesions. J Bone Jt Surg 53 A: 671–680

    Google Scholar 

  • Bacq Z, Alexander P (1961) Fundamentals of Radio-biology. Pergamon Press, New York

    Google Scholar 

  • Bakay L, Bendixen HH (1963) Central nervous system vulnerability in hypoxic states: isotope uptake studies. In: Schadé JP, McMenemey WH (eds) Selective Vulnerability of the Central Nervous System in Hypoxaemia. Blackwell Scientific Publications, Oxford, pp 63–78

    Google Scholar 

  • Barrett AJ (1969) Properties of lysosomal enzymes. In: Dingle JT (Hrsg) Lysosomes in biology and pathology, Bd 2. North Holland Publ Comp, Amsterdam London, S 245–312

    Google Scholar 

  • Barron KD, Means ED, Feng T, Harris H (1974) Ultrastructure of retrograde degeneration in thalamus of rat. 2. Changes in vascular elements and transvascular migration of leukocytes. Exp and Mol Pathol 20: 344–362

    Article  CAS  Google Scholar 

  • Beggs JL, Waggener JD (1976) Transendothelial vesicular transport of protein following compression injury to the spinal cord. Lab Inbest 34: 428–439

    Google Scholar 

  • Berg NO, Lindgren M (1958) Time-dose relationship and morphology of delayed radiation lesions of the brain in rabbits. Acta radiol (Stockh) Suppl 167: 1–118

    CAS  Google Scholar 

  • Berry K, Wisniewski HM, Svarzbein L, Baez S (1975) On the relationship of brain vasculature to production of neurological deficit and morphological changes following acute unilateral common carotid artery ligation in gerbils. J Neurol Sci 25: 75–92

    Article  PubMed  CAS  Google Scholar 

  • Boegaert L van, Hermanne J (1948) Aspects cliniques et pathologiques des radionécroses cérébrales chez l’homme. Ann Méd 49: 14

    Google Scholar 

  • Breckenridge BM, Crawford EJ (1961) The quantitative histochemistry of the brain. Enzymes of the glycogen metabolism. J Neurochem 7: 234–240

    Article  CAS  Google Scholar 

  • Breit A (1966) Die Strahlentoleranz des Rückenmarkes. In: Dtsch RöntgenkongreB 1965, Teil B, Sonderband zur Strahlentherapie 62: 77

    Google Scholar 

  • Brierley JB, Meldrum BS, Brown AW (1973) The threshold and neuropathology of cerebral anoxicischaemic cell damage. Archs Neurol, Chicago 29: 367–374

    Article  CAS  Google Scholar 

  • Brightman MW, Klatzo I, Olsson Y, Reese TS (1970) The bloodbrain barrier to proteins under normal and pathological conditions. J neurol Sci 10: 215–239

    Article  PubMed  CAS  Google Scholar 

  • Brownson RH (1960) The effect of X-irradiation on the perineuronal satellite cells in the cortex of aging brains. J Neuropath Exp Neurol 19: 407

    Article  PubMed  CAS  Google Scholar 

  • Brownson RH, Suter DB, Diller DA (1963) Acute brain damage induced by low dosage x-irradiation. Neurology 13: (Minneap) 181–191

    PubMed  CAS  Google Scholar 

  • Brownson RH, Suter DB, Oliver JL, Ingersoll EH, Burt DH (1964) Histochemical and histological changes induced in rat brain by X-irradiation. In: Haley TJ, Snider RS (eds) Response of the Nervous System to Ionizing Radiation. Little, Brown and Co, Boston, pp 307–335

    Google Scholar 

  • Cantu RC, Ames E, Dixon J, Digiacinto G (1969) Hypotension: a major factor limiting recovery from cerebral ischaemia. J surg Res 9: 525–529

    Article  PubMed  CAS  Google Scholar 

  • Carlson JG (1954) Immediate effects on division, morphology, and viability of the cell. In: Hollaender A (ed) Radiation Biology, Vol I, New York Toronto London: McGraw-Hill, p 763

    Google Scholar 

  • Cavanagh JB (1968) Effects of previous X-irradiation on the cellular response of nervous tissue to injury. Nature (Lond) 219: 626–627

    Article  CAS  Google Scholar 

  • Caveness WF, Roizin L, Innes JRM, Carsten A (1964) Delayed effects of X-irradiation on the central nervous system of the monkey. In: Haley TJ, Snider RS (eds) Second International Symposium on Response of the Nervous System to Ionizing Radiation, Los Angeles ( 1963 ). Boston, Little, Brown and Co, pp 448–475

    Google Scholar 

  • Caveness WF, Carsten AL, Roizin L, Schadé JP (1968) Pathogenesis of X-irradiation effects in the monkey cerebral cortex. Brain Research (Amst) 7: 1–120

    Article  Google Scholar 

  • Cazulla CL, Giordano PL, Invernizzi G (1967) Histological and Histochemical Aspects of the Early Effects or Roentgen Irradiation on the Nervous System of Rabbits. In: Klatzo I (ed) Brain Edema. Springer, Wien New York, pp 645–650

    Google Scholar 

  • Cervos-Navarro J (1964) Elektronenmikroskopische Befunde an den Kapillaren des Kaninchenhirns nach der Einwirkung ionisierender Strahlen. Arch Psychiat Nervenkr 205: 204–222

    Article  CAS  Google Scholar 

  • Cervos-Navarro J (1967) Brain edema due to ionizing radiation. In: Klatzo I, Seitelberger F (eds) Brain Edema. Proc Sympos Sept 11–13, Vienna 1965. Springer, New York Heidelberg Berlin, p 632

    Google Scholar 

  • Cervos-Navarro J (1969b) Acute changes of the CNS caused by the effect of ionizing rays; study of edema. Acta Neurol (Napoli) 24: 307

    CAS  Google Scholar 

  • Cervos-Navarro J (1970) Der zeitliche Ablauf des akuten Bestrahlungsödems im Gehirn. Acta Neurochir (Wien) 22: 43

    Article  CAS  Google Scholar 

  • Cervos-Navarro J, Bergeder HD, Serra JP (1969a) Ultraestructura de la sustancia blanca del cerebro de mond, en el edema agudo provocado por la aplicaicon local de rayos X. Arch Fund Roux Ocefa 3: 133

    PubMed  CAS  Google Scholar 

  • Chiang J, Kowada MD, Ames A, Wright RL, Majno G (1968) Cerebral ischemia. III. Vascular changes. Am J Pathol 52: 455–476

    PubMed  CAS  Google Scholar 

  • Churchill-Davidson I (1966) Therapeutic use of hyperbaric oxygen. Ann Roy Coll Surg Eng 39: 164

    PubMed  CAS  Google Scholar 

  • Churchill-Davidson I, Forster CA, Wiernik G (1966) The place of oxygen in radiotherapy. Brit J Radiol 39: 321

    Article  PubMed  CAS  Google Scholar 

  • Clemente CD, Holst EA (1954) Pathological changes in neurons, neuroglia and blood-brain barrier induced by x-irradiation of the heads of monkeys. Arch Neurol Psychol 71: 66–79

    CAS  Google Scholar 

  • Clemente CD, Richardson HE jr (1962) Some observations on radiation effects on the blood-brain barrier and cerebral blood vessels. In: Haley TJ, Snider RS Response of the Nervous System to Ionizing Radiation. Academic Press, New York, pp 411–428

    Google Scholar 

  • Coggeshall RE, MacLean PD (1958) Hippocampal Lesions Following Administration of 3-Acethylpyridine. Proc Soc Exp Biol Med 98: 687–689

    PubMed  CAS  Google Scholar 

  • Cohan SL, Abbott JR, Catravas GN (1973) The effect of ionizing radiation upon mitochondria of the central nervous system. J Neurochem 20: 1555–1561

    Article  PubMed  CAS  Google Scholar 

  • Colmant HJ (1959) Aktivitätsschwankungen der sauren Phosphatase im Rückenmark und den Spinalganglien der Ratte nach Durchschneidung des Nervus ischiadicus. Arch Psych Nervenhk 199: 60–71

    Article  CAS  Google Scholar 

  • Coy P, Dolman CL (1971) Radiation myelopathy in relation to oxygen level. Brit J Radiol 44: 705

    Article  PubMed  CAS  Google Scholar 

  • Craigie EH (1921, 1930, 1931 ) Changes in vascularity in the brain stem and cerebellum of the albino rat between birth and maturity. J comp Neurol 38: 27–48

    Google Scholar 

  • Craigie EH (1921, 1930, 1931 ) Changes in vascularity in the brain stem and cerebellum of the albino rat between birth and maturity. J comp Neurol 51: 1–11

    Google Scholar 

  • Craigie EH (1921, 1930, 1931 ) Changes in vascularity in the brain stem and cerebellum of the albino rat between birth and maturity. J comp Neurol 52: 353–357

    Google Scholar 

  • Craigie EH (1925) Postnatal changes in vascularity in the cerebral cortex of the male albino rat. J comp Neurol 39: 301–324

    Article  Google Scholar 

  • Craigie EH (1955) Vascular patterns of the developing nervous system. In: Waelsch H (ed) Biochemistry of the developing nervous system. Academic Press, New York, pp 28–51

    Google Scholar 

  • Davidoff M, Galabov G (1973) Typische Lysosomenarten in den Zellen der einzelnen Gebiete des ZNS der Ratte. Brain Res 49: 125–133

    Article  PubMed  CAS  Google Scholar 

  • Dayson H (1960) The blood-brain barrier. In: Field J, Magoun HW, Hall VE (eds) Handbook of Physiology. Williams & Wilkins, Baltimore, pp 1761–1768

    Google Scholar 

  • Deurs B van (1976) Observations on the blood brain barrier in hypertensive rats with particular reference to phagocytic pericytes. J Ultrastruct Res 56: 65–77

    Article  PubMed  Google Scholar 

  • Diemer K (1965) Der Einfluß chronischen Sauerstoffmangels auf die Kapillarentwicklung im Gehirn des Säuglings. Mschr Kinderheilk 113: 281–283

    PubMed  CAS  Google Scholar 

  • Dodson RF, Aoyagi M, Hartmann A, Tagashira Y (1974) Acute cerebral infarction and hypotension: an ultrastructural study. J Neuropath exp neurol 33: 400–407

    Article  PubMed  CAS  Google Scholar 

  • Ducker TB, Kindt GW, Kempe LG (1971) Pathological findings in acute experimental spinal cord trauma. J Neurosurg 35: 700–708

    Article  PubMed  CAS  Google Scholar 

  • Dunlap CE (1961) Effects of radiation. In: Anderson WAD (ed) Pathology, eth edition, Mosby, St Louis, Mo, pp 183–190

    Google Scholar 

  • Dunning HS, Wolff HG (1937) The relative vascularity of various parts of the central and peripheral nervous system of the cat and its relation to function. J comp Neurol 67: 433–450

    Article  Google Scholar 

  • Duve C de (1959) Lysosomes, a new group of cytoplasmic particles. In: Hayashi T (ed) Subcellular particles. Ronald Press, New York, pp 128–159

    Google Scholar 

  • Duve C de (1963) The lysosome concept. In: Reuck AVS de, Cameron MP (eds) Ciba Found. Symp Lysosomes. Little, Brown, Boston, Massachusetts, pp 1–35

    Google Scholar 

  • Duve C de (1967) General principles. In: Roodyn DB (ed) Enzyme cytology. Academic Press, Amsterdam London, pp 1–26

    Google Scholar 

  • Duve C de (1969) The lysosome in retrospect. In: Dingle JT (ed) Lysosomes in biology and pathology, Bd 1. North Holland Publ Comp, Amsterdam London, pp 3–37

    Google Scholar 

  • Duve C de, Wattiaux R (1966) Functions of lysosomes. Ann Rev Physiol 28: 435–492

    Article  Google Scholar 

  • Dyke DC van, Janssen P, Tobias CA (1962) Fluorescein as a sensitive, semiquantitative indicator of injury following alpha particle irradiation of the brain. In: Haley TJ, Snider RS (eds) Response of the nervous system to ionizing radiation. Academic Press, New York London, pp 369–382

    Google Scholar 

  • Estable-Puig RF de, Estable-Puig JF de (1971) Cell response of the olfactory bulb to ionizing radiation injury. An electron microscopical study. Acta neuropath (Berl) 17: 287–301

    Article  Google Scholar 

  • Estable-Puig JF, Estable RF de, Tobias C, Haymaker W (1964) Degeneration and regeneration of myelinated fibers in the cerebral and cerebellar cortex following damage from ionizing particle radiation. Acta Neuropath (Berl) 4: 175

    Article  Google Scholar 

  • Franke H, Lierse W (1965) Elektronenmikroskopische Untersuchungen über Hirnveränderungen des Meerschweinchens nach Röntgenbestrahlung. Fortschr Röntgenstr 102: 78–87

    Article  CAS  Google Scholar 

  • Franke H, Lierse W (1966) Ultrastrukturelle Strahlenreaktionen am Meerschweinchengehirn. Strahlentherapie 62: 138–142

    CAS  Google Scholar 

  • Franke H, Lierse W (1967) Histochemische und ultrastrukturelle Veränderungen am Meerschweinchengehirn nach Einwirkung unterschiedlicher Strahlenarten. Sonderbände z Strahlentherapie 64: 179

    Google Scholar 

  • Franke H, Lierse W (1968) The effect on the histochemically demonstrable glycogen content of the guinea-pig retina during inhalation of normobaric air or hyperbaric oxygen (3 atm). Germ med Mth 13: 289–291

    CAS  Google Scholar 

  • Friede R (1954) Die Bedeutung der Glia für den zentralen Kohlenhydratstoffwechsel. Zbl allg Path path Anat 92: 65–74

    CAS  Google Scholar 

  • Friede R (1965) The enzymatic response of astrocytes to various ions in vitro. J Cell Biol 20: 5–15

    Article  Google Scholar 

  • Garcia J, Buchwald NA, Feder BH, Koelling RA, Tedrow LF (1964) Ionizing radiation as a perceptual and aversive stimulus. I. Instrumental conditioning studies. In: Hadley TJ, Snider RS (eds) Response of the Nervous System to Ionizing Radiation. Little, Brown and Co, Boston, p 673

    Google Scholar 

  • Garcia JH, Cox JV, Hudgins WR (1971) Ultrastructure of the microvasculature in experimental cerebral infarction. Acta Neuropath (Berl) 18: 273–285

    Article  CAS  Google Scholar 

  • Giacomelli F, Weiner J, Spiro D (1970) The cellular pathology of experimental hypertension, V. Increased permeability of cerebral arterial vessels. Amer J Pathol 59: 133–159

    CAS  Google Scholar 

  • Gilmore SA (1969) Alterations in blood vessels in X-irradiated spinal cords of young rats. Anat Rec 163: 89–100

    Article  PubMed  CAS  Google Scholar 

  • Goodman JH, Bingham WG, Hunt WE (1976) Ultrastructural blood brain barrier alterations and edema formation in acute spinal cord trauma. J Neurosurg 44: 418–424

    Article  PubMed  CAS  Google Scholar 

  • Grünewald W (1968) Oxygen transport in blood and tissue. Thieme, Stuttgart, pp 100–114

    Google Scholar 

  • Hager H, Hirschberger W, Breit A (1962) Electron microscope observations on the irradiated central nervous system of the Syrian hamster. In: Haley TJ, Snider RS (eds) Response of the nervous system to ionizing radiation. Academic press, New York, pp 261–275

    Google Scholar 

  • Häggendal E, Johannsson B (1972) Effect of increased intravascular pressure on the blood brain barrier to protein in dogs. Acta Neurol Scandinav 48: 271–275

    Article  Google Scholar 

  • Hamberger A, Blomstrand C, Rosengren B (1970) Effect of X-irradiation on respiration and protein synthesis in neuronal and neuroglia cell fractions. Exp Neurol 26: 509–517

    Article  PubMed  CAS  Google Scholar 

  • Hassler O, Movin A (1966) Microangiographic studies on changes in the cerebral vessels after irradiation. I. Lesions in the rabbit produced by “Co gamma rays, 195 kV and 34 MV roentgen rays. Acta Radiol TPB 4: 279–289

    Article  CAS  Google Scholar 

  • Haymaker W (1962) Morphological changes in the nervous system following exposure to ionizing radiation. In: Proceedings of the Symposium on the Effects of Ionizing Radiation on the Nervous System. International Atomic Energy Commission, Vienna, p 309

    Google Scholar 

  • Haymaker W, Lindgren M (1970) Nerve disturbances following exposure to ionizing radiation. In: Vinken PJ, Bruyn GW (eds) Handbook of Clinical Neurology, Vol 7 (Diseases of Nerves). North Holland Publishing Company, Amsterdam, pp 388–401

    Google Scholar 

  • Haymaker W, Laquer G, Nauta WJH, Pickering JE, Sloper JC, Vogel FS (1958) The effects of barium 140-Lanthanum140(gamma) radiation on the central nervous system and pituitary gland of macaque monkeys. A study of 67 brains and spinal cords and 77 pituitary glands. J Neuropath Exp Neurol 17: 12

    Article  PubMed  CAS  Google Scholar 

  • Haymaker W, Ibrahim MZM, Miguel J, Call N, Riopelle AJ (1968) Delayed radiation effects in the brains of monkeys exposed to x-and y-rays. J Neuropath exp Neurol 27:50–79

    Article  PubMed  CAS  Google Scholar 

  • Haymaker W, Ibrahim MZM, Miguel J, Call N, No-den P, Ashley W (1972) Acute changes in the central nervous system of monkeys exposed to protons. J Neuropath Exp Neurol 31: 72–101

    Article  PubMed  CAS  Google Scholar 

  • Herken H, Lange K, Kolbe H (1969) Brain disorders induced by pharmacological blockage of the pentose phosphate pathway. Biochem biophys Res Commun 36: 93–100

    Article  PubMed  CAS  Google Scholar 

  • Hicks SP (1953) Effects of ionizing radiation on adult and embryonic nervous system. Res Publs Ass Res nery ment Dis 32: 439–462

    CAS  Google Scholar 

  • Hicks SP, Montgomery POB (1952) Effects of acute radiation on the adult mammalian central nervous system. Proc Soc Exptl Biol Med 80: 1530

    Google Scholar 

  • Hicks SP, Montgomery POB, Leigh KE (1956) Time-intensity factors in radiation response. I. The acute effects of megavolt electrons (cathode rays) and high-and low-energy x-rays with special reference to the brain. A.M.A. Arch Pathol 61: 226

    CAS  Google Scholar 

  • Hicks SP, Wright KA, D’Amato CJ (1958) Time-intensity factors in radiation response. II. Some genetic factors in brain damage. Arch Path 66: 394

    CAS  Google Scholar 

  • Hirano A (1969) The fine structure of the brain in edema. In: Boume GH (ed) The Structure and Function of Nervous Tissue. Academic Press, New York, pp 69–135

    Google Scholar 

  • Hirano A, Zimmermann HM, Levine S (1965) Intracellular accumulation of fluid and cryptococcal polysaccharide in oligodendroglia. Arch Neurol (Chic) 12: 189–196

    Article  CAS  Google Scholar 

  • Hirano A, Levine S, Zimmermann HM (1967) Experimental cyanide encephalopathy. J Neuropath exp Neurol 26: 200–213

    Article  PubMed  CAS  Google Scholar 

  • Hirano A, Zimmermann HM, Levine S (1968) Remyelination in the central nervous system following cyanide intoxication. J Neuropath exp Neurol 27: 144–145

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Wright EA (1969) A demonstration of the oxygen effect in irradiated brain. Intern J Radiat Biol 16: 593–601

    Article  CAS  Google Scholar 

  • Hopewell JW, Wright EA (1970) The nature of latent cerebral irradiation damage and its modification by hypertension. Brit J Radiol 43: 161–167

    Article  PubMed  CAS  Google Scholar 

  • Horstmann E (1960) Die postonatale Entwicklung der Kapillarisierung im Gehirn eines Nesthockers (Ratte) und eines Nestflüchters (Meerschweinchen). Verh Anat Ges Zürich 1959 Anat Anz Erg H 106 /107: 405–410

    Google Scholar 

  • Horstmann E (1966) Abstand und Durchmesser der Kapillaren im Zentralnervensystem verschiedener Wirbeltierklassen. In: Tower DB, Schade JP (eds) Structure and function of the cerebral cortex. Elsevier, Amsterdam London New York Princeton, pp 59–63

    Google Scholar 

  • Hossmann KA, Kleihues P (1973) Reversibility of ischaemic brain damage. Archs Neurol, Chicago 29: 375–384

    Article  CAS  Google Scholar 

  • Hossmann KA, Zimmermann V (1974) Restitution of the monkey brain after 1 hour complete ischaemia. I. Physiological and morphological observations. Brain Res 81: 75–95

    Article  Google Scholar 

  • Hunziker O, Frey H, Schultz U (1974) Morphometric investigations of capillaries in the brain cortex of the cat. Brain Res 65: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Hunziker O, Emmenegger H, Frey H, Schultz U, Meier-Ruge W (1974a) Morphometric characterization of the capillary network in the cat’s brain cortex: A comparison of the physiological state and hypovolemic conditions. Acta neuropath (Berl) 29: 57–63

    Article  CAS  Google Scholar 

  • Hyden H (1959) A microchemical study of the relationship between glia and nerve cells. In: Tower DB, Schade JP (eds) Structure and function of the cerebral cortex. Elsevier, Amsterdam, pp 348–357

    Google Scholar 

  • Ibrahim MZM, Levine S (1967) Effect of cyanide intoxication on the metachromatic material found in the central nervous system. J Neurol Neurosurg Psychiat 30: 545–555

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim MZM, Morgan RS, Adams C (1965) Histochemistry of the neuroglia and myelin in experimental cerebral edema. J Neurol Neurosurg Psychiat 28: 91–98

    Article  PubMed  CAS  Google Scholar 

  • Innes JRM, Carsten A (1961) Demyelinating or malacic myelopathy. Arch Neurol 4: 190–199

    Article  PubMed  CAS  Google Scholar 

  • Janssen P, Klatzo I, Miguel J, Brustad T, Behar A, Haymaker W, Lyman J, Henry J, Tobias C (1962) Pathologic changes in the brain from exposure to alpha particles from a 60 inch cyclotron. In: Haley TJ, Snider RS (eds) Response of the Nervous system to Ionizing Radiation. Academic Press, New York, p 383

    Google Scholar 

  • Johansson B (1974b) Blood-brain barrier dysfunction in acute arterial hypertension. Thesis, Göteborg

    Google Scholar 

  • Johansson B, Li CL, Olsson Y, Klatzo I (1970) The effect of acute arterial hypertension on the blood-brain barrier to protein tracers. Acta neuropath (Berl) 16: 117–124

    Article  CAS  Google Scholar 

  • Klatzo I (1967) Neuropathological aspects of brain edema. J Neuropath exp Neurol 26: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Klatzo I (1973) Experimental studies on brain ischaemia. 4th Danubia Symp. on Neuropathology, Vienna

    Google Scholar 

  • Klatzo I, Miguel J (1960) Observations on pinocytosis in nervous tissue. J Neuropath exp Neurol 19: 475–487

    Article  PubMed  CAS  Google Scholar 

  • Klatzo I, Miguel J, Tobias C, Haymaker W (1961) Effects of alpha-particle radiation on the rat brain, including vascular permeability and glycogen studies. J Neuropath exp Neurol 20: 459483

    Google Scholar 

  • Klatzo I, Miguel J, Tobias C, Haymaker W (1962) Observations on appearance of histochemicallydemonstrable glycogen in the rat brain as effect of alpha-particle irradiation. In: Proc Sympos on Effects of Ionizing Radiation on the Nervous System. Vienna; 5.-8. VI. 1961. International Energy Agency, Vienna, pp 285–296

    Google Scholar 

  • Klatzo I, Miguel J, Otenasek R (1962) The application of fluorescence labeled serum proteins ( FLSP) to the study of vascular permeability in the brain. Acta neuropath (Berl) 2: 144–160

    Article  Google Scholar 

  • Klatzo I, Steinwell O, Streicher E, Smith DE (1965) Use of double tracers in the study of vascular permeability in the brain. J Neuropath exp Neurol 24: 149–150

    Article  Google Scholar 

  • Klatzo I, Farkas-Bargeton E, Guth L, Miguel J, Olsson Y (1970) Some morphological and biochemical aspects of abnormal glycogen accumulation in the glia. VI. Congr Internat Neuropath Masson et Cie (eds) Paris, pp 351–365

    Google Scholar 

  • Kobrine AI, Doyle TT, Martins AN (1975) Local spinal cord blood flow in experimental traumatic myelopathy. J Neurosurg 42: 144–149

    Article  PubMed  CAS  Google Scholar 

  • Kogel AJ van der, Barendsen GW (1974) Late effects of spinal cord irradiation with 300 kV X-rays and 15 MeV neutrons. Br J Radiol 47: 393–398

    Article  PubMed  Google Scholar 

  • Korr H (1973) Autoradiographische Untersuchungen zur Proliferation der Neuroglia im Hirn erwachsener Mäuse. Verh Dtsch Zool Ges 66: 255–260

    Google Scholar 

  • Krogh A (1919a) The number and distribution of capillaries in muscles with calculations of the oxygen pressurehead necessary for supplying the tissue. J Physiol (Lond) 52: 409–415

    CAS  Google Scholar 

  • Krogh A (1919b) The supply of oxygen to the tissue and the regulation of the capillary circulation. J Physiol (Lond) 52: 457–474

    CAS  Google Scholar 

  • Lampert PW, Davis RL (1964) Delayed effects of radiation on the human central nervous system. Neurology, Minneap 14: 912–917

    PubMed  CAS  Google Scholar 

  • Lampert P, Earle KM, Gibbs CJ, Gajdusek DC (1970) Electron microscopic studies on experimental spongiform encephalopathies (Kuru and Creutzfeldt-Jakob Disease) in chimpanzees. VIth Int Congress of Neuropath Masson & Cie, Paris, pp 916–930

    Google Scholar 

  • Larsson B (1960) Blood vessel changes following local irradiation of the brain with high-energy protons. Acta Societatis medicorum Upsalienses 65: 61–78

    CAS  Google Scholar 

  • Levin VA, Landahl HD, Freeman-Dove MA (1976) The application of brain capillary permeability coefficient measurements to pathological conditions and the selection of agents which cross the blood-brain barrier. J Pharmacokin Biopharm 4: 499–519

    Article  CAS  Google Scholar 

  • Lierse W (1963) Die Kapillardichte im Wirbeltiergehirn. Acta anat 54: 1–31

    Article  PubMed  CAS  Google Scholar 

  • Lierse W (1965) Ultrastrukturelle Hirnveränderung der Ratte nach Gaben von 3-Acethyl-Pyridin. Zeitschr Zellforsch 67: 86–95

    Article  CAS  Google Scholar 

  • Lierse W (1968) Die Hirnkapillaren und ihre Glia. Acta neuropath (Berl) Suppl IV, 40–52

    Google Scholar 

  • Lierse W (1971, 1972 ) Glycogen accumulations and 3H-glucose utilisation following X-irradiation, hyperbaric oxygenation and administration of vasodilator drugs. Eur Neurol 9: 88

    Google Scholar 

  • Lierse W (1972) The uptake of Glucose-H3 by glia cells before and after radiation injury (x-rays and 14 MeV neutrons). Virchows Arch Abt B Zell-path 11: 326–333

    CAS  Google Scholar 

  • Lierse W (1973) Carbohydratutilisation in der Glia von Gehirn und Retina nach Bestrahlungen, hyperbarer Sauerstoffatmung und vasoaktiven Pharmaka. Verh Anat Ges 67: 331–335

    Google Scholar 

  • Lierse W, Franke HD (1966) Ultrastrukturelle Frühreaktionen am Kleinhirn des Meerschweinchens nach CO60-Bestrahlungen des Kopfes. Strahlentherapie 131: 595

    PubMed  CAS  Google Scholar 

  • Lierse W, Franke HD (1967) Effects of X-irradiation on Guinea pig brain. In: Klatzo I, Seitelberger F (eds) Brain Edema, Proc Sympos Sept 11.-13., Vienna 1965. Springer, Berlin Heidelberg New York, pp 639–644

    Google Scholar 

  • Lierse W, Franke HD (1967) Zelluläre Fehlleistungen im Zentralnervensystem des Meerschweinchens nach Einwirkung verschiedener ionisierender Strahlen. Anat Anz 120: 369–373

    Google Scholar 

  • Lierse W, Franke HD (1970) Histochemical and ultrastructural events in radiation injury of the brain. Proceedings of the 6th International Congress of Neuropathology. Masson, Paris, pp 228236

    Google Scholar 

  • Lierse W, Franke HD (1970) Hyperbarische Sauerstoffbeatmung: Die Kohlenhydrate des Zentralnervensystems als begrenzender Faktor. Anat Anz 126 (Erg H): 65–67

    Google Scholar 

  • Lierse W, Franke HD (1970) Ultrastrukturelle Veränderungen am Gehirn des Meerschweinchens und der Ratte während der Latenzzeit der Strahlenreaktion. Fortschr Röntgenstr 112: 151

    Article  CAS  Google Scholar 

  • Lierse W, Franke HD (1982) Cellular Disturbance in the Rats Retina after Irradiation and Metabolic Errors during the Postnatal Period. In: Kriegel H, Schmahl W, Kistner G, Stieve F-E (eds) Developmental Effects of Prenatal Irradiation. Gustav Fischer, Stuttgart New York, pp 181–184

    Google Scholar 

  • Lierse W, Horstmann E (1965) Quantitative anatomy of the cerebral vascular bed with especial emphasis of homogeneity and inhomogeneity in small parts of the gray and white matter. Acta neurol skand Suppl 14

    Google Scholar 

  • Lierse W, Gritz K, Franke HD (1965) Histochemischer Nachweis von Glykogen und Mukopolysacchariden im Gehirn des Meerschweinchens nach Röntgenbestrahlung. Fortschr Roentgenstr 103: 612–618

    Article  PubMed  CAS  Google Scholar 

  • Lindgren M (1958) On tolerance of brain tissue and radiosensitivity on brain tumours to irradiation. Acta Radiol (Stockh) Suppl 170: 1

    CAS  Google Scholar 

  • Lowenberg-Scharenberg K, Bassett RC (1950) Amyloid degeneration of the human brain following X-ray therapy. J Neuropath exp Neurol 9: 93

    Article  PubMed  CAS  Google Scholar 

  • Masurovsky ED, Bunge MB, Bunge RP (1967a) Cytological studies of organotropic cultures of rat dorsal root ganglia following x-irradiation in vitro. I. Changes in neurons and satellite cells. J Cell Biol 32: 467–496

    Article  PubMed  CAS  Google Scholar 

  • Masurovsky ED, Bunge MB, Bunge RP (1967b) Cytological studies of organotropic cultures of rat dorsal root ganglia following X-irradiation in vitro. II. Changes in Schwann cells, myelin sheaths, and nerve fibers. J Cell Biol 32: 497

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DS, Kruger L (1965a) The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing particles. J Cell Biol 25: 141–157

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DS, Kruger L (1965b) Small blood vessels and the origin of phagocytes in the rat cerebral cortex following heavy particle irradiation. Experimental Neurology 12: 33–54

    Article  PubMed  CAS  Google Scholar 

  • MacDonald LW, Hayes TL (1967) The role of capillaries in the pathogenesis of delayed radionecrosis of brain. Amer J Path 50: 745–764

    Google Scholar 

  • Merker HJ, Novack L, Zimmermann D (1970) Electron microscopic studies on the effect of 6-Aminonicotinamide on the mammalian embryos. Naunyn-Schmiedebergs Arch Pharmak 266: 401–402

    Google Scholar 

  • Meyer-König E (1973) Ultrastruktur der Glia-und Axonschädigung durch 6-Aminonikotinamid (6-AN) am Sehnerv der Ratte. Acta Neuropathol 26: 115–126

    Article  PubMed  Google Scholar 

  • Miguel J, Haymaker W (1965) Astroglial reactions to ionizing radiation: with emphasis on glycogen accumulation. In: Progress in brain research. In: De Robertis, Carrea R (eds) Biology of neuroglia, EDP, Vol 15. Elsevier, Amsterdam, pp 89–114

    Chapter  Google Scholar 

  • Miguel J, Haymaker W (1967) Brain edema induced by particle and ultraviolet radiation. In: Klatzo I, Seitelberger F (eds) Brain Edema. Proc Sympos Sept. 11–13 Vienna, 1965. Springer, New York Heidelberg Berlin, p 615

    Google Scholar 

  • Miguel J, Klatzo I, Menzel DB, Haymaker W (1963) Glycogen changes in x-irradiated rat brain. Acta neuropath (Berl) 2: 482–490

    Article  Google Scholar 

  • Miguel J, Lundgren PR, Jenkins JO (1966) Effects of Roentgen radiation on glycogen metabolism of the rat brain. Acta Radiol (Ther) (Stockholm) 5: 123–132

    Article  Google Scholar 

  • Nair V, Roth LJ (1964) Effect of X-irradiation and certain other treatments on blood-brain barrier permeability. Radiat Res 23: 249–264

    Article  PubMed  CAS  Google Scholar 

  • Noetzel H, Rox J (1964) Autoradiographische Untersuchungen über Zellteilung und Zellentwicklung im Gehirn der erwachsenen Maus und des erwachsenen Rhesus-Affen nach Injektion von radioaktivem Thymidin. Acta neuropath (Berl) 3: 326–342

    Article  CAS  Google Scholar 

  • O’Brien MD, Waltz AG, Jordan MM (1974) Ischemic cerebral edema. Distribution of water in brains of cats after occlusion of the middle cerebral artery. Arch Neurol 30: 456–460

    Article  PubMed  Google Scholar 

  • Olkowski Z, Manocha SL, Bourne GH (1972) Response of motorneurons of the spinal cord to gamma radiation — A cytochemical study. Strahlentherapie 143: 202

    PubMed  CAS  Google Scholar 

  • Olsson Y, Carsten AL, Klatzo I (1972) Effects of gamma radiation on the shark brain. Acta neuropath (Berl) 21: 1–10

    Article  CAS  Google Scholar 

  • Opitz E (1948) Über die Sauerstoffversorgung des Zentralnervensystems. Naturwissenschaften 35: 80–88

    Article  PubMed  CAS  Google Scholar 

  • Opitz E, Schneider M (1950) Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen. Ergebn Physiol 46: 126–260

    Google Scholar 

  • Orthaus M, Lierse W (1975) Wachstumshemmung der Rattenretina während der Postnatalzeit nach Actinomycin-D-Gaben. Z mikrosk-anat Forsch, Leipzig 89, 4: 665–6691

    CAS  Google Scholar 

  • Penfield W, Cone W (1926) Acute swelling of oligodendroglia, a specific type of neuroglial change. Arch Neurol (Chic) 16: 131–153

    Google Scholar 

  • Pennybaker J, Russel DS (1948) Necrosis of the brain due to radiation therapy. J Neurol Neurosurg Psychiat 11: 183

    Article  Google Scholar 

  • Petrén T (1938) Untersuchungen über die relative Kapillarlänge der motorischen Hirnrinde in normalem Zustande und nach Muskeltraining. Anat Anz 85: 196

    Google Scholar 

  • Pryszkowski V, Lierse W, Franke HD (1968) Histochemische und ultrastrukturelle Frühveränderungen des Meerschweinchengehirns nach Bestrahlung mit 17 MeV Betastrahlen. Acta neuropath (Berl) 11: 338–346

    Article  Google Scholar 

  • Rose JE, Malis I I, Kruger L, Baker CP (1960) Effects of heavy, ionizing, monoenergetic particles on the cerebral cortex. II. Histological appearance of laminar lesions and growth of nerve fibers after laminar destructions. J Comp Neurol 115: 243

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein LJ, Klatzo I, Miguel J (1962) Histochemical observations on oxidative enzyme activity of glial cells in a local brain injury. J Neuropath exp Neurol 21: 116–136

    Article  PubMed  CAS  Google Scholar 

  • Rudemann NB, Ross PS, Berger M, Goodman MN (1974) Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Biochem J 138: 1–10

    Google Scholar 

  • Russell DS, Wilson CW, Tansley K (1949) Experimental radionecrosis of the brain in rabbits. J Neurol Neurosurg Psychiat 12: 187

    Article  PubMed  CAS  Google Scholar 

  • Samorajski T, Zeman W, Ordy JM (1964) Histochemistry of particle microbeam lesions in the brain of the mouse. J Neuropath Exp Neurol 23: 264–289

    Article  PubMed  CAS  Google Scholar 

  • Samorajski T, Zeman W, Ordy JM (1967) Ultra-structural changes in the cerebellum after focal deuteron irradiation. J Neuropath Exp Neurol 26: 40

    Article  PubMed  CAS  Google Scholar 

  • Schettler T, Shealy CN (1970) Experimental selective alteration of blood-brain barrier by X-irradiation. J Neurosurg 32: 89

    Article  PubMed  CAS  Google Scholar 

  • Schochet S (1970) Pathogenesis of 6-aminonicotinamide neurotoxicity. Vlth Int Congress of Neuropath, Masson & Cie, Paris, pp 89–90

    Google Scholar 

  • Scholz W (1934) Experimentelle Untersuchungen über die Einwirkung von Roentgenstrahlung auf das reife Gehirn. Z Ges Neurol Psychiat 150: 765–785

    Article  Google Scholar 

  • Scholz W, Schlote W, Hirschberger W (1962) Morphological effect of repeated low dosage and single high dosage application of X-irradiation to the central nervous system. In: Haley J, Snider RS (eds) Response of the Nervous System to Ionizing Radiation. Academic Press, New York London, pp 211–232

    Google Scholar 

  • Schümmelfelder N (1962) Die experimentelle Strahlenschädigung des Zentralnervensystems. Ergebn allgem Path path Anat 42: 34

    Google Scholar 

  • Sokoloff L (1975) Determination of local cerebral glucose consumption. In: Haper AM, Jennet WB, Miller JA, Rowan JO (eds) Blood flow and Metabolism in the Brain. Churchill Livingstone, Edinburgh, pp 1–8

    Google Scholar 

  • Tanabe M (1969) Effects of ionizing radiations on central nervous system. Nippon Acta Radiol 29: 633

    PubMed  CAS  Google Scholar 

  • Thews G (1960) Die Sauerstoffdiffusion im Gehirn. Pflügers Arch ges Physiol 271: 197–226

    Article  CAS  Google Scholar 

  • Vogel FS, Pickering JE (1956) Demyelinization induced in the brains of monkeys by means of fast neutrons. Pathogenesis of the lesion and comparison with the lesions of multiple sclerosis and Schilder’s disease. J Exp Med 104: 435

    Article  PubMed  Google Scholar 

  • Werner L (1967) Probleme quantitativer lebensgeschichtlicher Untersuchungen der Kapillardichte in Rattengehirnen. Zeitschr f mikr-anat Forschung 78: 272–288

    Google Scholar 

  • Westergaard E, van Deurs B, Brondsted HE (1977) Increased vesicular transfer of horseradish peroxidase across cerebral endothelium, evoked by acute hypertension. Acta Neuropath (Berl) 37: 141–152

    Article  CAS  Google Scholar 

  • Wolf A, Cowen D, Geller LM (1959) The effects of an antimetabolite, 6-AN, on the cns. Transact. Amer Neurol Ass 140: 13

    Google Scholar 

  • Wolf A, Cowen D, Geller LM (1962) Structural and functional effects of 6-AN and other antimetabolites on the cns. In: Jacob H (ed) Proc IVth Internat Cong Neuropathol, Vol. III, Thieme, Stuttgart, pp 447–453

    Google Scholar 

  • Wolfe LS, Klatzo I, Miguel J, Haymaker W (1962) Effects of alpha-particle irradiation on brain glycogen in the rat. J Neurochem 9: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Wrage D, Lierse W, Franke HD (1969) Die Aktivierung der alkalischen und sauren Phosphatase in Ganglienzellen nach Bestrahlungen des Meerschweinchenhirns mit Röntgenstrahlen (200 kV). Strahlentherapie 137: 320–325

    PubMed  CAS  Google Scholar 

  • Yeo JD (1976) A review of experimental research in spinal cord injury. Paraplegia 14: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Zelena J (1968) Accumulation of organelles at the end of interrupted axons. Z Zellforsch Mikrosk Anat 91: 200–219

    Article  PubMed  CAS  Google Scholar 

  • Zeman W (1961) Radiosensitivities of nervous tissue. Fundamental aspects of radiosensitivity. Edit: Brookhaven National Laboratory, Upton New York, p 176

    Google Scholar 

  • Zeman W (1963) Disturbances of nucleic acid metabolism preceding delayed radionecrosis of nervous tissue. Proc nat Acad Sci (Wash) 50: 626–630

    Article  CAS  Google Scholar 

  • Zeman W (1964) Strahlenschäden des Nervensystems. Arch Psychiat Nervenkrh 206: 185

    Article  CAS  Google Scholar 

  • Zeman W (1966) Zur Pathogenese der Strahlenspätschädigung des Rückenmarks. Sonderbände z Strahlentherapie 62: 68

    CAS  Google Scholar 

  • Zeman W (1966) Pathogenesis of radiolesions in the mature central nervous system. In: Proceedings of the Fifth International Congress of Neuropathology. Excerpta Medical Foundation, p 302

    Google Scholar 

  • Zeman W (1968) The effects of atomic radiations. In: Minckler J (ed) Pathology of the Nervous System. Vol 1, McGraw-Hill, New York Toronto Sydney London, p 864

    Google Scholar 

  • Zeman W (1968) Histologic events during the latent interval in radiation injury. In: Bailey OT, Smith DE (eds) The Central Nervous System. Int Academy of Pathology, Monograph No 9, p 184

    Google Scholar 

  • Zeman W, Curtis HJ (1962a) Metabolic and histochemical studies on direct radiation-induced nerve cell necrosis. Proceedings of the Fourth International Congress of Neuropathology. Georg Thieme, Stuttgart, pp 141–147

    Google Scholar 

  • Zeman W, Samorajski T (1971) Effects of irradiation on the nervous system. In: Berjis CC (ed) Pathology of Irradiation. Williams & Wilkins Co, Baltimore, pp 213–217

    Google Scholar 

  • Zeman W, Curtis HJ, Gebhard EL, Haymaker W (1959) Tolerance of mouse-brain tissue to high-energy deuterons. Science 130: 1760

    Article  PubMed  CAS  Google Scholar 

  • Zeman W, Samorajski T, Curtis HJ (1962b) Histochemical studies on mouse brains irradiated with high energy deuteron microbeams. In: Effects of Ionizing Radiation on the Nervous System, International Atomic Energy Agency, Vienna, p 297

    Google Scholar 

  • Zeman W, Carsten A, Biondo S (1964) Cytochemistry of delayed radionecrosis of the murine spinal cord. In: Haley TJ, Snider RS (eds) Response of the Nervous System to Ionizing Radiation. Little, Brown and Co, Inc, Boston, pp 105–126

    Google Scholar 

  • Zeman W, Ordy JM, Samorajski T (1968) Modification of acute radiation effect on cerebellar neurons of mice by Actinomycin. D Exp Neurol 21: 52

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Lierse, W. (1985). Experimentelle Strahlenfolgen am Hirngewebe. In: Heuck, F., Scherer, E. (eds) Strahlengefahrdung und Strahlenschutz / Radiation Exposure and Radiation Protection. Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82229-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82229-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82230-8

  • Online ISBN: 978-3-642-82229-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics