Skip to main content

Part of the book series: Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology ((HDBRADIOL,volume 20))

  • 50 Accesses

Zusammenfassung

Wenige Jahre nach der Entdeckung der Röntgenstrahlen und der natürlichen Radioaktivität sind einige grundlegende Phänomene der biologischen Strahlenwirkung beschrieben worden, die noch heute festen Bestand haben. So ist die hohe Strahlenempfindlichkeit der Lymphozyten beobachtet (Heineke 1904), die Hemmung der Zellteilung gefunden worden. Bergonié und Tribondeau (1906) stellten die Regel auf, daß die Strahlenempfindlichkeit von Zellen mit steigender Proliferation zunimmt und mit steigender Differenzierung abnimmt. Zellbiologische Problemstellungen und insbesondere die Zellabtötung sowie die ihr zugrundeliegenden Mechanismen haben seither im Vordergrund strahlenbiologischer Forschung gestanden. Dennoch muß man feststellen, daß diese Mechanismen heute noch nicht klar, vor allem hinsichtlich ihrer zeitlichen Abfolge, erkannt sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams GE, Michael BD, Asquuith JC, Shenoy MA, Watts ME, Williams DW (1975) Rapid-mixing studies on the time scale of radiation damage in cells. In: Nygaard OF, Adler HJ, Sinclair WK (eds) Radiation research, biomedical chemical and physical perspectives. Academic Press, New York London, p 478

    Google Scholar 

  • Alper T (1979) Cellular radiobiology, Cambridge University Press, Cambridge London New York Melbourne

    Google Scholar 

  • Alper T, Howard-Flanders P (1956) The role of oxygen in modifying the radiosensitivity of E coli. Nature 178: 978–979

    CAS  Google Scholar 

  • Altman KJ, Gerber GB. Okada S (1970) Radiation biochemistry. Academic Press, New York London

    Google Scholar 

  • Andreeff M (1975) Impulscytophotometrie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bacq ZM (1965) Chemical protection against ionizing radiation. Thomas, Springfield/III

    Google Scholar 

  • Barendsen GW (1962) Dose-survival curves of human cells in tissue culture irradiated with a-, ß-, 20 kV X-, and 200 kV X-radiation. Nature 193: 1153–1155

    PubMed  CAS  Google Scholar 

  • Barendsen GW, Broerse JJ (1970) Experimental radiotherapy of a rat rhabdomyosarcoma with 15 MeV neutrons and 300 kV X-rays. Eur J Cancer 6: 89–109

    PubMed  CAS  Google Scholar 

  • Bauer KD, Dethlefsen LA (1981) Control of cellular proliferation in HeLa-S3 suspension cultures. Characterization of cultures utilizing acridine orange staining procedures. J Cell Physiol 108: 99–112

    PubMed  CAS  Google Scholar 

  • Bedford JS, Mitchell JB (1973) Dose-rate effects in synchronous mammalian cells in culture. Radiat Res 54: 316–327

    PubMed  CAS  Google Scholar 

  • Bergonié J, Tribondeau L (1906) Une interpretation de quelques resultats de la radiothérapie et essai de fixation d’une technique rationelle. C R Acad Sci [D] (Paris) 143: 983–985

    Google Scholar 

  • Berry RJ, Hall EJ, Cavanagh J (1970) Radiosensitivity and the oxygen effect for mammalian cells cultured in vitro in stationary phase. Br J Radiol 43: 81–90

    PubMed  CAS  Google Scholar 

  • Betz EH (1974) Morphologische Veränderungen des lymphatischen Systems nach Bestrahlung. In: Kärcher KH, Streffer C (Hrsg) Die Strahlenwirkung auf das Lymphosystem. Springer, Berlin Heidelberg New York, p 29

    Google Scholar 

  • Beuningen D van, Streffer C, Berthold G (1981) Mikronukleusbildung im Vergleich zur Überlebensrate von menschlichen Melanomzellen nach Röntgen-, Neutronenbestrahlung und Hyperthermie. Strahlentherapie 157: 600–606

    PubMed  Google Scholar 

  • Bond VP, Fliedner TM, Archambeau JO (1965) Mammalian radiation lethality: a disturbance in cellular kinetics. Academic Press, New York London

    Google Scholar 

  • Braun H (1965) Beiträge zur Histologie und Zytologie des bestrahlten Thymus. III. Mitteilung: Die Wirkung subletaler Dosen. Strahlentherapie 126: 236–246

    PubMed  CAS  Google Scholar 

  • Braun H (1967) Beiträge zur Histologie und Zytologie des bestrahlten Thymus. Strahlentherapie 133: 411–421

    PubMed  CAS  Google Scholar 

  • Brenk HAS van den, Sharpington C, Orton C, Stone M (1974) Effects of X-radiation on growth and function of the repair blastema (granulation tissue). II. Measurements of angiogenesis in the se-lye pouch in the rat. Int J Radiat Biol 25: 277–289

    Google Scholar 

  • Brown SO, Krise GM, Pace HB, Boer J de (1964) Effect of continuous radiation on reproduction capacity and fertility of the albino rat and mouse. In: Carlson WD, Gasner FX (eds) Effects of ionizing radiation on the reproductive system. Perga-mon Press, New York, p 1101

    Google Scholar 

  • Cairnie AB, Lala PK, Osmond DG (1976) Stem cells of renewing cell populations. Academic Press, New York San Francisco London

    Google Scholar 

  • Carr FJ, Fox BW (1978) Flow cytofluorimetric examination of changes in mammalian cell DNA denatured in situ following irradiation. Int J Radiat Biol 34: 549

    Google Scholar 

  • Casarett GW (1964) Similarities and contrasts between radiation and time pathology. Adv Gerontol Res 1: 109–163

    Google Scholar 

  • Chadwick KH, Leenhouts HP (1973) A molecular theory of cell survival. Phys Med Biol 18: 78–87

    PubMed  CAS  Google Scholar 

  • Chadwick KH, Leenhouts HP (1981) The molecular theory of Radiation Biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Chapman JD, Gillespie CJ (1981) Radiation-induced events and their times scale in mammalian cells. In: Lett JT, Adler H (eds) Adv in radiation biology, vol 9. Academic Press, New York London Toronto Sydney San Francisco, p 143

    Google Scholar 

  • Chapman JD, Gillespie CJ, Reuvers AP, Dugle DL (1975) The inactivation of chinese hamster cells by X-rays: The effects of chemical modifiers on single and double events. Radiat Res 64: 365–375

    PubMed  CAS  Google Scholar 

  • Coultas PG, Ahier RG, Field SB (1981) Effect of neutron and X-irradiation on cell proliferation in mouse lung. Radiat Res: 516–528

    Google Scholar 

  • Countryman PJ, Heddle JA (1976) The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat Res 41: 321–332

    PubMed  CAS  Google Scholar 

  • Cullen BM, Lansley I (1974) The effect of pre-irradiation growth conditions on the relative radio-sensitivities of mammalian cells at low oxygen concentration. Int J Radiat Biol 26: 579–588

    CAS  Google Scholar 

  • Denekamp J (1973) Changes in the rate of repopulation during multifraction irradiation of mouse skin. Br J Radiol 46: 381–387

    PubMed  CAS  Google Scholar 

  • Denekamp J (1975) Changes in the rate of proliferation in normal tissues after irradiation. In: Nygaard OF, Adler HI, Sinclair WK (eds) Radiation research. Academic Press, New York San Francisco London, p 810

    Google Scholar 

  • Denekamp J, Thomlinson RH (1971) The cell proliferation kinetics of four experimental tumours after acute X-irradiation. Cancer Res 31: 1279–1284

    PubMed  CAS  Google Scholar 

  • Denekamp J, Ball MM, Fowler JE (1969) Recovery and repopulation in mouse skin as a function of time after X-irradiation. Radiat Res 37: 361–370

    PubMed  CAS  Google Scholar 

  • Dertinger H, Hülser D (1981) Increased radioresistance of cells in cultured multicell spheroids. I. Dependence on cellular interaction. Radiat Environ Biophys 19: 101–107

    PubMed  CAS  Google Scholar 

  • Dertinger H, Jung H (1969) Molekulare Strahlenbiologie. Heidelberger Taschenbücher Bd 57/58. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dittrich W, Göhde W (1969) Impulsfluorometrie bei Einzelzellen in Suspension. Z Naturforsch [B] 24: 360–361

    CAS  Google Scholar 

  • Djordjevie B, Tolmach LJ (1967) Responses of synchronous populations of HeLa cells to ultraviolet irradiation at selected stages of the generation cycle. Radiat Res 32: 327–346

    Google Scholar 

  • Dugle DL, Gillespie CJ, Chapman JD (1976) DNA strand breaks, repair, and survival in X-irradiated mammalian cells. Proc Natl Acad Sci USA 73: 809–812

    PubMed  CAS  Google Scholar 

  • Durand RE, Sutherland RM (1972) Effects of intercellular contact on repair of radiation damage. Exp Cell Res 71: 75–80

    PubMed  CAS  Google Scholar 

  • Dutreix J, Wambersie A, Bounik C (1973) Cellular recovery in human skin reactions: Application to dose fraction number overall time relationship in radiotherapy. Eur J Cancer 9: 159–167

    PubMed  CAS  Google Scholar 

  • Eldjarn L, Pihl A (1960) Mechanism of protective and sensitizing action. In: Errera M, Forssberg A (eds) Mechanisms in radiobiology, Bd II. Academic Press, New York, p 231

    Google Scholar 

  • Elkind MM, Sutton H (1960) Radiation response of mammalian cells grown in culture. I. Repair of X-ray damage in surviving chinese hamster cells. Radiat Res 13: 556–593

    PubMed  CAS  Google Scholar 

  • Elkind MM, Whitmore GF (1967) The radiobiology of cultured mammalian cells. Gordon and Breach, New York

    Google Scholar 

  • Elkind MM, Whitmore GF, Alescio T (1964) Actinomycin D: suppression of recovery in X-irradiated mammalian cells. Science 143: 1454–1457

    PubMed  CAS  Google Scholar 

  • Elkind MM, Sutton-Gilbert H, Moses WB, Alescio T, Swain RW (1965) Radiation response of mammalian cells grown in culture. V. temperature dependence of the repair of X-ray damage in surviving cells (aerobic and hypoxic). Radiat Res 25: 359–376

    PubMed  CAS  Google Scholar 

  • Elkind MM, Sutton-Gilbert H, Moses WB, Kamper C (1967) Sublethal and lethal radiation damage. Nature 214: 1088–1092

    PubMed  CAS  Google Scholar 

  • Feinendegen LE (1979) Radiation problems in fusion energy production. In: Okada S, Imamura M, Terashima T, Yamaguchi Y (eds) Radiation research. Toppan Printing, Tokyo, p 32

    Google Scholar 

  • Field SB, Hornsey S (1974) Damage to mouse lung with neutron and X-rays. Eur J Cancer 10: 621–627

    PubMed  CAS  Google Scholar 

  • Field SB, Hornsey S (1977) Repair in normal tissues and the possible relevance to radiotherapy. Strahlentherapie 153: 371–379

    PubMed  CAS  Google Scholar 

  • Field SB, Hornsey S, Kutsutani Y (1976) Effects of fractionated irradiation on mouse lung and a phenomenon of slow repair. Br J Radiol 49: 700–707

    PubMed  CAS  Google Scholar 

  • Fonck K, Konings AWT (1978) The effect of vitamin E on cellular survival after X irradiation of lymphoma cells. Br J Radiol 51: 832–833

    CAS  Google Scholar 

  • Fowler JF, Denekamp J, Delapeyre C, Harris SR, Skeldon PW (1974) Skin reactions in mice after multifraction X-irradiation. Int J Radiat Biol 25: 213–223

    CAS  Google Scholar 

  • Fu K, Phillips TL, Kane LJ, Smith V (1975) Tumor and normal tissue response to irradiation in vivo: Variation with decreasing dose rates. Radiology 114: 709–716

    PubMed  CAS  Google Scholar 

  • Generoso WM, Shelby MD, Serres FJ de (1980) DNA repair and mutagenesis in eukaryotes. Plenum Press, New York London

    Google Scholar 

  • Goodhead DT (1971) Inactivation and mutation of cultured mammalian cells by aluminium characteristic ultra soft X-rays. III. Implications of the theory of dual radiation action. Int J Radiat Biol 32: 43–70

    Google Scholar 

  • Goodhead DT (1979) Models of radiation inactivation and mutagenesis. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven Press, New York, p 231

    Google Scholar 

  • Guichard M, Jensen G, Meister A, Malaise EP (1983) Depletion of glutathione synthesis by buthionine sulfoximine decreases the oxygen enhancement ratio of V79 cells. Radiat Res 94: 613

    Google Scholar 

  • Hahn GM, Little JB (1972) Plateau phase cultures of mammalian cells. Curr Top Radiat Res 8: 39–83

    CAS  Google Scholar 

  • Hahn GM, Stewart JR, Yang S-J. Parker V (1968) Chinese hamster cell monolayer cultures. I. Changes in cell dynamics and modifications of the cell cycle with the period of growth. Exp Cell Res 49: 285–292

    PubMed  CAS  Google Scholar 

  • Hall EJ (1972) Radiation dose-rate: a factor of importance in radiobiology and radiotherapy. Br J Radiol 45: 81–97

    PubMed  CAS  Google Scholar 

  • Hall EJ (1978) Radiobiology for the radiologist. Harper and Row, Hagerstown/Maryland

    Google Scholar 

  • Han A, Elkind MM (1977) Additive action of ionizing and non-ionizing radiations throughout the chinese hamster cell-cycle. Int J Radiat Biol 31: 275–282

    CAS  Google Scholar 

  • Han A, Sinclair WK, Kimbler BE (1976) The effect of N-ethylmaleimide on the response to X-rays of synchronized HeLa cells. Radiat Res 65: 337–350

    PubMed  CAS  Google Scholar 

  • Hanawalt PhC, Cooper PK, Ganesau AK, Smith ChA (1979) DNA repair in bacteria and mammalian cells. Ann Rev Biochemistry 48: 783

    CAS  Google Scholar 

  • Heineke H (1904) Über die Einwirkung der Röntgenstrahlen auf innere Organe. Muench Med Wochenschr 51: 785

    Google Scholar 

  • Hesslewood JP (1978) DNA strand breaks in resistant and sensitive murine lymphoma cells detected by the hydroxylapatite chromatographic technique. Int J Radiat Biol 34: 461–469

    CAS  Google Scholar 

  • Hidvegi EJ, Holland J, Streffer C, Beuningen D van (1978) Biochemical phenomena in ionizing irradiation of cells. In: Busch H (ed) Methods in cancer research, vol 25. Academic Press, New York San Francisco London, p 187

    Google Scholar 

  • Holthusen H (1921) Beiträge zur Biologie der Strahlenwirkung. Untersuchungen an Askarideneiern. Pflügers Arch Ges Physiol 187: 1–24

    Google Scholar 

  • Hopwood LE, Tolmach LJ (1979) Manifestation of damage from ionizing radiation in mammalian cells in the post-irradiation generations. In: Lett JT, Adler H (eds) Adv in radiat biol, Bd 8. Academic Press, New York London Toronto Sidney San Francisco, p 317

    Google Scholar 

  • Hornsey S (1972) The radiation response of human malignant melanoma cells in vitro and in vivo. Cancer Res 32: 650–651

    PubMed  CAS  Google Scholar 

  • Hornsey S (1973) The radiosensitivity of the intestine. In: Braun H, Henck F, Ladner H-A, Messerschmidt O, Musshoff K, Streffer C (eds) Strahlenempfindlichkeit von Organen und Organsystemen der Säugetiere und des Menschen. Thieme, Stuttgart, p 78

    Google Scholar 

  • Howard A, Pelc SR (1953) Synthesis of DNA in normal and irradiated cells and its relation to chromosome breakage. Heredety 6: 261–273

    CAS  Google Scholar 

  • Isaacs JT, Binkley F (1977) Cyclic-AMP-dependent control of the rat hepatic glutathione disulfidesulfhydryl-ratio. Biochim Biophys Acta 498: 29–38

    PubMed  CAS  Google Scholar 

  • Jain VK, Pohlit W (1973) Influence of energy metabolism on the repair of X-ray damage in living cells. II. Split dose recovery, liquid holding reactivation and division delay reversal in stationary populations of yeast. Biophysik 9: 155–165

    PubMed  CAS  Google Scholar 

  • Jung H (1978) Eine einfache Anordnung zum Auszählen von Zellkolonien. Leitz-Mitt Wiss und Techn 4 (4): 102–103

    Google Scholar 

  • Jüngling O, Langendorff H (1932) Über die Wirkung zeitlich verteilter Dosen auf den Kernteilungsablauf von Vicia faba. Strahlentherapie 44: 771–782

    Google Scholar 

  • Kellerer AM, Rossi HH (1972) The theory of dual radiation action. Curr Top Radiat Res 8: 85–158

    CAS  Google Scholar 

  • Kellerer AM, Rossi HH (1978) A generalized formulation of dual radiation action. Radiat Res 75: 471–488

    Google Scholar 

  • Kiefer J (1971) The importance of cellular energy metabolism for sparing effect at dose fractionation with electrons and ultra-violet light. Int J Radiat Biol 20: 325–336

    CAS  Google Scholar 

  • Kiefer J (1981) Biologische Strahlenwirkung. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Konings AWT, Drijver EB (1979) Radiation effects on membranes. I. Vitamin E deficiency and lipid peroxidation. Radiat Res 80: 494–501

    PubMed  CAS  Google Scholar 

  • Konings AWT, Damen J, Trieling WB (1979) Protection of liposomal lipids against radiation induced oxidative damage. Int J Radiat Biol 35: 343–350

    CAS  Google Scholar 

  • Körner I, Walicka M, Malz W, Beer JZ (1977) DNA repair in two L5178 Y cell lines with different X-ray sensitivities. Stud Biophys 61: 141–149

    Google Scholar 

  • Krönig S, Friedrich W (1918) Physikalische und biologische Grundlagen der Strahlentherapie. Sonderband Strahlentherapie. Urban & Schwarzenberg, München

    Google Scholar 

  • Lajtha LG, Oliver R (1961) Some radiobiological considerations in radiotherapy. Br J Radiol 34: 252–257

    PubMed  CAS  Google Scholar 

  • Lange CS (1975) The repair of DNA double-strand breaks in mammalian cells and the organization of the DNA in their chromosomes. Basic Life Sci 5B: 677–683

    Google Scholar 

  • Langendorff H, Langendorff M (1973) Weitere Untersuchungen über die Beziehungen der Strahlenempfindlichkeit eines höheren Organismus zum Adenylat-Cyclase-System seiner Zellen. Strahlentherapie 146: 436–443

    PubMed  CAS  Google Scholar 

  • Leuthauser SWC, Oberley LW (1978) Modification of radiation response of a solid tumor by superoxide dismutase. Radiat Res 74: 541–542

    Google Scholar 

  • Littbrand B, Revesz L (1969) The effect of oxygen on cellular survival and recovery after irradiation. Br J Radiol 42: 914–924

    PubMed  CAS  Google Scholar 

  • Little JB (1970) Irradiation of primary human amnion cell culture: Effects on DNA-synthesis and progression through the cell cycle. Radiat Res 44: 674–699

    PubMed  CAS  Google Scholar 

  • Little JB (1971) Repair of potentially lethal radiation damage in mammalian cells: enhancement by conditioned medium from stationary cultures. Int J Radiat Biol 20: 87–92

    CAS  Google Scholar 

  • Madoc-Jones H (1964) Variations in radiosensitivity of a mammalian cell line with phase of growth cycle. Nature 203: 983–984

    PubMed  CAS  Google Scholar 

  • Malaise EP, Charbit A, Chavaudra N, Combes PF, Douchez J, Tubiana M (1972) Change in volume of irradiation human metastasis. Investigation of repair of sublethal damage and tumour repopulation. Br J Cancer 26: 43–52

    PubMed  CAS  Google Scholar 

  • Melching H-J, Streffer C (1966) Zur Beeinflussung der Strahlenempfindlichkeit von Säugetieren durch chemische Substanzen. In: Jucker E (ed) Fortschritte der Arzneimittelforschung, Bd 9. Birkhäuser, Basel Stuttgart, p 11

    Google Scholar 

  • Michael BD, Harrop HA, Maughan RL, Patel KB (1978) A fast kinetics study of the modes of action of some different radiosensitizers in bacteria. Br J Cancer [Suppl 3] 37: 29–33

    CAS  Google Scholar 

  • Midander J, Revesz L (1980) The micronucleus ( MN) in irradiated cells as a measure of survival. Br J Cancer 41: 204

    Google Scholar 

  • Millar BC, Fielden EM, Steele JJ (1979) A biphasic radiation survival response of mammalian cells to molecular oxygen. Int J Radiat Biol 36: 177–180

    CAS  Google Scholar 

  • Mitznegg P, Heim F, Hach B, Säbel M (1971) The effect of ageing, caffeine treatment, and ionizing radiation on nucleic acid synthesis in the mouse liver. Life Sci Part II 10: 1281–1292

    CAS  Google Scholar 

  • Molls M, Streffer C, Zamboglou N (1981) Micronucleus formation in preimplanted mouse embryos cultured in vitro after irradiation with X-rays and neutrons. Int J Radiat Biol 39: 307–314

    CAS  Google Scholar 

  • Molls M, WeiBenborn U, Streffer C (1982) Bestrahlung von Mäuseembryonen des Pronukleus-and 2-Zell-Stadiums: die Abhängigkeit der Mikronukleusbildung and Zellvermehrung von DNA-Gehalt and Zellzyklusphase. Strahlentherapie 158: 504–512

    PubMed  CAS  Google Scholar 

  • Molls M, Streffer C, Fellner B, WeiBenborn U (1983) Development of cytogenetic effects and recovery after irradiation of preimplantation mouse embryos. Proceedings EULEP-Symposium 17’ annual meeting of the European Society for Radiation Biology, Bordeaux (1982), im Druck

    Google Scholar 

  • Moore JL, Pritchard JAY, Smith CW (1972) Oxygen equilibration in the determination of K for HeLa S3 ( OXF ). Int J Radiat Biol 22: 149–158

    CAS  Google Scholar 

  • McNally NJ (1982) Cell survival. In: Pizzarello DJ (ed) Radiation biology. CRC Press, Boca Raton, Florida, p 27

    Google Scholar 

  • McNally NJ, Ronde J de (1976) The effect of repeated small doses of radiation on recovery from sublethal damage by Chinese hamster cells irradiation in the plateau phase of growth. Int J Radiat Biol 29: 221–234

    CAS  Google Scholar 

  • Ohyama H, Yamada T (1973) X-ray modification of the allosteric functions of rat thymocyte phosphofructokinase. Biochim Biophys Acta 302: 261–266

    CAS  Google Scholar 

  • Ohyama H, Yamada T, Watanabe I (1981) Cell volume reduction associated with interphase death in rat thymocytes. Radiat Res 85: 333–339

    PubMed  CAS  Google Scholar 

  • Petkau A, Chelack WS, Pleskach SD (1976) Protection of post-irradiated mice by superoxide dismutase. Int J Radiat Biol 29: 297–299

    CAS  Google Scholar 

  • Phillips RA, Tolmach LJ (1966) Repair of potentially lethal damage in X-irradiated HeLa cells. Radiat Res 29: 413–432

    PubMed  CAS  Google Scholar 

  • Puck TT, Marcus PI (1955) A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc Natl Acad Sci 41: 432–437

    PubMed  CAS  Google Scholar 

  • Quastler H (1945) Studies on Roentgen death in mice. Am J Roentgenol 54: 449–456

    Google Scholar 

  • Raaphorst GP, Dewey WC (1979) A study of the repair of potentially lethal and sublethal radiation damage in Chinese hamster cells exposed to extremely hypo-or hypertonic NaCl solutions. Radiat Res 77: 325–340

    PubMed  CAS  Google Scholar 

  • Redpath JL, Patterson LK (1978) The effect of membrane fatty acid composition on the radiosensitivity of E coli. Radiat Res 75: 443–447

    CAS  Google Scholar 

  • Regaud C (1922) Distribution chronologique rationelle d’un traitement de cancer épithélial par les radiation. C R Soc Biol (Paris) 86: 1085–1088

    Google Scholar 

  • Reinhardt RD, Pohlit W (1976) Influence of intracellular adenosine-triphosphate concentration on survival of yeast cells following X-irradiation. In: Kiefer J (ed) Radiation and cellular control prozesses. Springer, Heidelberg New York, p 117

    Google Scholar 

  • Reinhold HS, Buisman GH (1975) Repair of radiation damage to capillary endothelium. Br J Radiol 48: 727–731

    PubMed  CAS  Google Scholar 

  • Revesz L, Modig H (1965) Cysteamine-induced increase of cellular glutathione-level: A new hypothesis of the radioprotective mechanism. Nature 207: 430–431

    PubMed  CAS  Google Scholar 

  • Rotblat J, Lindop P (1961) Long-term effects of a single whole-body exposure of mice to ionizing radiations. II. Causes of death. Proc R Soc Lond (Biol)154: 350–368

    Google Scholar 

  • Rubin P, Casarett GW (1968) Clinical radiation pathology. Saunders, Philadelphia

    Google Scholar 

  • Sanner T, Pihl A (1972) Effect of X-rays on the regulatory functions of glutamate dehydrogenase from beef liver. Radiat Res 51: 155–166

    PubMed  CAS  Google Scholar 

  • Simons JWIM (1979) Development of a liquid-holding technique for the study of DNA-repair in human diploid fibroblasts. Mutat Res 59: 273–283

    PubMed  CAS  Google Scholar 

  • Sinclair WK (1972) Cell cycle dependence of the lethal radiation response in mammalian cells. Curr Top Radiat Res 7: 264–285

    Google Scholar 

  • Sinclair WK, Morton RA (1966) X-ray sensitivity during the cell generation cycle of cultured Chinese hamster cells. Radiat Res 29: 450–474

    PubMed  CAS  Google Scholar 

  • Streffer C (1969) Strahlen-Biochemie. Heidelberger Taschenbücher 59/60. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Streffer C (1980) Biologische Grundlagen der Strahlentherapie. In: Scherer E (ed) Strahlentherapie. Springer, Berlin Heidelberg New York, p 196

    Google Scholar 

  • Streffer C, Beisel P (1974) Radiation effects on NAD-and DNA-metabolism in mouse spleen. FEBS Lett 44: 127–130

    PubMed  CAS  Google Scholar 

  • Streffer C, Schafferus S (1971) The induction of liver enzymes by cortisol after combined treatment of mice with X-irradiation and inhibitors of protein synthesis. Int J Radiat Biol 20: 301–313

    CAS  Google Scholar 

  • Streffer C, Beuningen D van, Elias S (1977) Comparative effects of tritiated water and thymidine on the preimplanted mouse embryos in vitro. Curr Top Radiat Res 12: 182–193

    Google Scholar 

  • Streffer C, Beuningen D van, Molls M, Zamboglou N, Schulz S (1980) Kinetics of cell proliferation in the preimplanted mouse embryo in vivo and in vitro. Cell Tissue Kinet 13: 135–143

    PubMed  CAS  Google Scholar 

  • Suit HD (1973) Radiation biology: A basis for radiotherapy. In: Fletcher GH (ed) Textbook of radiotherapy, 2nd edn. Lea and Febinger, Philadelphia, p 75

    Google Scholar 

  • Szumiel I (1981) Intrinsic radiosensitivity of proliferating mammalian cells. In: Lett JT, Adler H (eds) Adv in radiat biology, Bd 9. Academic Press, New York London Toronto Sidney San Francisco, p 281

    Google Scholar 

  • Taylor IW, Bleehen NM (1977) Changes in sensitivity to radiation and ICRF 159 during the life of monolayer cultures of EMT 6 tumour line. Br J Cancer 35: 587–594

    PubMed  CAS  Google Scholar 

  • Terasima T, Tolmach LJ (1963) Variation in several responses of HeLa cells to X-irradiation during the division cycle. Biophys J 3: 11–33

    PubMed  CAS  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure at some human lung cancers and possible implications for radiotherapy. Br J Cancer 9: 539–549

    PubMed  CAS  Google Scholar 

  • Till JE, McCulloch EA (1963) Early repair processes in marrow cells irradiated and proliferating in vivo. Radiat Res 18: 96–105

    PubMed  CAS  Google Scholar 

  • Trott K-R (1972) Strahlenwirkung auf die Vermehrung von Säugetierzellen. In: Diethelm L, Olson O, Strand F, Vieten H, Zuppinger A (eds) Handbuch der Medizinischen Radiologie. Springer, Berlin Heidelberg New York, p 43

    Google Scholar 

  • Tubiana M (1971) The kinetics of tumour cell proliferation and radiotherapy. Br J Radiol 44: 225–247

    Google Scholar 

  • Tubiana M (1973) Clinical data and radiobiological bases for radiotherapy. Curr Top Radiat Res 9: 109–118

    CAS  Google Scholar 

  • Underbrink AG, Pond V (1976) Cytological factors and their predictive role in comparative radio-sensitivity: A general summary. Curr Topics Radiat Res 11: 251–306

    CAS  Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1982) Ionizing Radiation: Sources and Biological Effects. United Nations, New York

    Google Scholar 

  • Utsumi H, Elkind MM (1979) Potentially lethal damage versus sublethal damage: Independent repair processes in actively growing chinese hamster cells. Radiat Res 77: 346–360

    PubMed  CAS  Google Scholar 

  • Virsik RP, Harder D (1981) Statistical interpretation of the overdispersed distribution of radiation-induced dicentric chromosome aberrations at high LET. Radiat Res 85: 13–23

    PubMed  CAS  Google Scholar 

  • Warters RL, Hofer KG, Harris CR, Smith JM (1977) Radionuclide toxicity in cultured mammalian cells: Elucidation of the primary site of radiation damage. Curr Top Radiat Res 12: 389–407

    Google Scholar 

  • Watts ME, Maughan RL, Michael BD (1978) Fast kinetics of the oxygen effect in irradiated mammalian cells. Int J Radiat Biol 33: 195–209

    CAS  Google Scholar 

  • Weichselbaum RR, Nove J, Little JB (1978) Deficient recovery from potentially lethal radiation damage in ataxia telangiectasia and xeroderma pigmentosum. Nature 271: 261–262

    PubMed  CAS  Google Scholar 

  • Wideroe R (1971) Various examples from cellular kinetics showing how radiation quality can be analysed and calculated by the two-component theory of radiation. In: International Atomic Energy Agency Wien (ed) Biophysical aspects of radiation quality, p 311

    Google Scholar 

  • Wideroe R (1975) Problems and trends in radiotherapeutic treatment of deep-seated tumors. Radiol Clin 44: 112–141

    CAS  Google Scholar 

  • Withers HR (1967) The dose survival relationship for irradiation of epithelial cells of mouse skin. Br J Radiol 40: 187–194

    PubMed  CAS  Google Scholar 

  • Withers HR, Elkind MM (1969) Radiosensitivity and fractionation response of crypt cells of mouse jejunum. Radiat Res 38: 598–613

    PubMed  CAS  Google Scholar 

  • Yamada T, Ohyama H (1980) Changes in surface morphology of rat thymocytes accompanying interphase death. J Radiat Res 21: 190–196

    PubMed  CAS  Google Scholar 

  • Yamada T, Ohyama H, Kinjo Y, Watanabe M (1981) Evidence for the internucleosomal breakage of chromatin in rat thymocytes irradiated in vitro. Radiat Res 85: 544–553

    PubMed  CAS  Google Scholar 

  • Yatvin MB (1976) Evidence that survival of y-irradiated Escherichia coli is influenced by membrane fluidity. Int J Radiat Biol 30: 571–575

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Streffer, C., van Beuningen, D. (1985). Zelluläre Strahlenbiologie und Strahlenpathologie (Ganz- und Teilkörperbestrahlung). In: Heuck, F., Scherer, E. (eds) Strahlengefahrdung und Strahlenschutz / Radiation Exposure and Radiation Protection. Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82229-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82229-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82230-8

  • Online ISBN: 978-3-642-82229-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics