Advertisement

Herz- und Kreislaufdiagnostik — Diagnosis of Heart and Circulation

  • H. Hundeshagen
  • N. Schad
  • W. E. Adam
  • F. Bitter
  • P. Lichtlen
  • H.-J. Engel
  • D. P. Pretschner
  • R. W. Parkey
  • S. E. Lewis
  • F. J. Bonte
  • L. M. Buja
  • J. T. Willerson
  • J. A. Markisz
  • A. Kuruc
  • S. Treves
  • K. Alexander
  • G. Buttermann
  • H. W. Pabst
Chapter
  • 23 Downloads
Part of the Handbuch der medizinischen Radiologie / Encyclopedia of Medical Radiology book series (HDBRADIOL, volume 15 / 3)

Abstract

Nuclear medicine is now recognized as an independent speciality in many countries including the German Federal Republic, where there are regulations for postgraduate training. It originated from the efforts of a few individuals and developed rapidly after the introduction of radionuclides with short physical halflives. Yet as long ago as 1927 Blumgartand Weisswere using natural radioisotopes for measuring circulation time (1927, 1928). The techniques of nuclear medicine thus had their beginnings in a test employed in cardiovascular research. Today, nuclear medicine is of major importance in cardiological diagnosis.

Abkürzungen

A

Verhältnis L/R — Verhältnis der Schlagvolumina

A(i)

Zählraten

B

Backgroundcounts — Untergrundzählrate

C

Cosinuskoeffizient

D

Enddiastole

dC/dt

Steigung am Wendepunkt der abfallenden bzw. aufsteigenden LV-Kurve

EDV

Enddiastolisches Volumen

EDC

Enddiastolische Zählrate

EF

Ejection Fraction — Auswurfsfraktion

ESC

Endsystolische Zählrate

f

Herzfrequenz

F

Ende der schnellen Füllungsphase

FA

Amplitude des ersten Fourierkoeffizienten

Gy

Grey

FWHM

Full width at half maximum

HR

High Resolution

HS

High Sensitivity

HSA

Humanserumalbumin

HW

Hinterwand

KV

Kontrastventrikulographie

LAO

Left anterior oblique — Links schräge Position

LM

List Mode

LSF

Line Spread Function

LV

Linker Ventrikel

LVET

LV Ejection Time — Austreibungszeit

LVFT1

LV Fast Filling Time — Schnelle Füllungsphase

LVFT2

LV Slow Filling Time — Langsame Füllungsphase

mCi

Millicurie

MDP

Methylendiphosphat

MBq

Megabecquerel

PEP

Pre Ejection Period — Isometrische Anspannungszeit

PER

Peak Ejection Rate — Kontraktionsgeschwindigkeit

PET

Peak Ejection Time — Zeitpunkt der maximalen Kontraktion

PFR

Peak filling Rate — Relaxationsgeschwindigkeit

PFT

Peak Filling Time — Zeitpunkt der maximalen Relaxation

PH

Phase des ersten Fourierkoeffizienten

PSF

Point Spread Function

PYP

Pyrophosphat

R

Regurgitationsfraktion

RAO

Right anterior oblique — Rechts schräge Position

rd

rad

REF

Regionale Auswurfsfraktion

RV

Rechter Ventrikel

RNV

Radionuklidventrikulographie

Se

Spetum

S

Shunt

S

Sinuskoeffizient

S

Systole

SFM

Synchronized Frame Mode

SV

Schlagvolumen

SW

Seitenwand

VW

Vorderwand

Ax

Abbildungsmaßstab in x-Richtung

Ay

Abbildungsmaßstab in y-Richtung

Literatur

  1. Adam WE, Lorenz WJ, Scheer KE (1967) Quantitative Untersuchungen mit der Szintillations-Kamera. In : Hoffmann G, Scheer KE (Hrsg) Radioisotope in der Lokalisationsdiagnostik. Schattauer, Stuttgart, S 55Google Scholar
  2. Adam WE, Lorenz WJ, Scheer KE (1968) Quantitative radiokardiographische Untersuchungen mit der Szintillations-Kamera. In : Fellinger K, Hoffmann G (Hrsg) Radionuklide in Kreislaufforschung und Kreislaufdiagnostik. Schattauer, Stuttgart, S 17Google Scholar
  3. Blumgart HL, Weiss S (1927a) Studies on the velocity of blood flow, II. The velocity of blood flow in normal testing individuals an a critique of the method used. J Clin Invest 4:15CrossRefGoogle Scholar
  4. Blumgart HL, Weiss S (1927b) Studies on the velocity of blood flow, VII. The pulmonary circulation time in normal resting individuals. J Clin Invest 4:399CrossRefGoogle Scholar
  5. Blumgart HL, Weiss S (1928) Studies on the velocity of blood flow, XL The pulmonary circulation time, the minute volume flow through the lungs and the quantity of blood in the lungs. J Clin Invest 6:103PubMedCrossRefGoogle Scholar
  6. Fine J, Seligman AM (1943) Labeling of serum-albumin with iodine-131. J Clin Invest 22:285PubMedCrossRefGoogle Scholar
  7. Fucks W, Knipping HW (1955) Eine Retina zur Bestimmung der raumzeitlichen Verteilung radioaktiver Substanzen. Naturwissenschaften 42:493CrossRefGoogle Scholar
  8. Fucks W, Knipping HW, Liese E, Budde W (1956) Bildliche Darstellung der Verteilung und der Bewegung von radioaktiven Substanzen im Raum, insbesondere von biologischen Objekten. Z Naturforsch [B] 11:142Google Scholar
  9. Hahn L, Hevesy GA (1940/41) Method of blood volume determination. Acta Physiol Scand 1:3Google Scholar
  10. Hahn L, Hevesy GA (1941/42) Rate of penetration of ions into erythrocytes. Acta Physiol Scand 3:193CrossRefGoogle Scholar
  11. Hubbard JP, Preston WN, Ross RA (1942) Veocity of blood flow in infants and young children, determined by radioactive sodium. J Clin Invest 21:613PubMedCrossRefGoogle Scholar
  12. Huff RL, Parrish D, Crockett W (1957) Circulatory dynamics by means of crystal radiation detectors on the anterior theracic wall. Cir Res 5:395Google Scholar
  13. Huff RL, Parrish D, Crockett W, Haukeness SJ (1958) Hemodynamics, Interpreted by means of multiple scintillation detectors placed over the anterior thracic wall. Strahlentherapie [Sonderb] 38:161Google Scholar
  14. Hundeshagen H (1979) Clinical application of modern nuclear-medical-instrumentation. Nuklearmed Symposium, Madrid 1979. In: Berrocal O (ed) Nuklearmedizin. Schattauer, Stuttgart New York, S 2Google Scholar
  15. Hundeshagen H, Graul EH, Reckewell G (1959) Simultan, Radiotest — ein Gerät zum Messen und Registrieren von Radioaktivität, besonders bei der klinischen Radio-Isotopen-Diagnostik. Atompraxis 5:357Google Scholar
  16. Hundeshagen H, Henskes DTh, Geisler S, Gettner U, Creutzig H (1970) Der Anschluß eines datenverarbeitenden Systems an einen modifizierten Dynapix-Scanner, Picker-Bulletin 2/68. In: Hundeshagen H (Hrsg) Radiokardiographie. Hütling, HeidelbergGoogle Scholar
  17. Knipping HW, Ludes H (1959) Die quantitative Beurteilung der Koronarfunktion vom klinischen Standpunkt. Ergospirographie, Isotopenmethoden. Munch Med Wochenschr 101:1246PubMedGoogle Scholar
  18. McCracken EC, Sheard C, Essex HE (1937) Ensemble for determination of circulation time of blood by ionization (Geiger chamer method.) Proc Soc Exp Biol Med 36:106Google Scholar
  19. Mclntyre WJ, Leonards JR (1955) A method for continuously recording the disappearance of radioactive tracers from circulating blood. Cir Res 3:14Google Scholar
  20. Mclntyre WJ, Pritchard WH, Eckstein RW, Friedel HL (1951) Determination of cardiac output by continuous recording system utilizing iodinated (J131) human serum albumin; Animal studies. Circulation 4:552Google Scholar
  21. Mclntyre WJ, Pritchard WH, Eckstein RW, Friedell HL (1952a) Determination of cardiac output by continuous recording system utilizing iodinated (J131) human serum albumin; II. Clinical studies. Circulation 6:572Google Scholar
  22. Mclntyre WJ, Storaasli JP, Krieger H, Pritchard WH, Friedell HL (1952b) 131J labeled serum albumin; Its use in the study of cardiac output and peripheral vascular flow. Radiology 59:849Google Scholar
  23. Mclntyre WJ, Storaasli JP, Krieger H, Pritchard WH, Friedell HL (1955) The use of 131J labeled serum albumin in the study of cardiac output and peripheral vascular flow. Peaceful Uses of Atomic Energy, Proceedings of the Int Conf Geneva. 1955, Vol 10, p 350Google Scholar
  24. Nylin G (1945a) The dilution curve of activity in arterial blood after intravenous injection of labeled corpuscles. Am Heart J 30:175CrossRefGoogle Scholar
  25. Nylin G (1945b) Blood volume determination with radioactive phosphorus. Br Heart J 7:81CrossRefGoogle Scholar
  26. Nylin G (1955) Zirkulationsstudien mit radioaktiven Isotopen. Munch Med Wochenschr 97:4PubMedGoogle Scholar
  27. Nylin G, Hedlung S (1950) Die Anwendung der Isotope in der Cardiologie. Berl Med Zschr 1:217Google Scholar
  28. Prinzmetal M, Corday E, Bergmann HC, Schwartz L, Spritzler RJ (1948) Radiocardiography : a new method for studying the blood flow through the chambers of the heart in human beings. Science 108:340PubMedCrossRefGoogle Scholar
  29. Pritchard WH, Mclntyre WJ, Schmidt WC, Brofman BL, Moore DJ (1952) The determination of cardiac output by a continous recording system utilizing iodinated (J-131) human serum albumin. Circulation 6:572PubMedGoogle Scholar
  30. Pritchard WH, Moir TW, McIntyre WJ (1955) Measurement of the early disappearance of iodinated (E 131J) albumin from circulating blood by a continuous recording method. Circ Res 3:19PubMedGoogle Scholar
  31. Waser P, Hunzinger W (1948) Bestimmung von Kreislaufgrößen mit 24Na. Helv Physiol Acta 7:62Google Scholar

References

  1. Andrews EJ, Fleming JW, Schad N, Nickel O (1981) New computer programs for radionuclide evaluation of ventricular wall motion in ischemic heart disease. RSNA, Chicago, Scientific ProgramGoogle Scholar
  2. Ashburn WL, Schelbert HR, Verba JW (1978) Left ventricular ejection fraction — a review of several radionuclide angiographic approaches using the scintillation camera. In: Holman BL, Sonnenblick EH, Lesch M (eds) Principles of cardiovascular nuclear medicine. Grune & Stratton, New York, pp 171–188Google Scholar
  3. Bender MA, Blau M (1963) The autofluoroscope, no 10. Nucleonics 21:52–56Google Scholar
  4. Berger H, Reduto L, Johnstone D (1978) Radionuclide assessment of global and regional left ventricular function during graded bicycle exercise in coronary artery disease. 2nd international congress of nuclear medicine and biology, September 1978, p 2Google Scholar
  5. Bowyer KW, Konstantinow G, Rerych SK, Jones RH (1978) Optimum counting intervals in radionuclide cardiac studies. Nuclear cardiology, pp 37–49Google Scholar
  6. Budinger TF, Rollo FD (1978) Physics and instrumentation. In: Holman BL, Sonnenblick EH, Lesch M (eds) Principles of cardiovascular nuclear medicine. Grune & Stratton, New York, pp 17–51Google Scholar
  7. Claude AP, Austin EH, Jones RH, Durham NC (1981) Effect of valve replacement for chronic mitral insufficiency on left ventricular function during rest and exercise. J Thorac Cardiovasc Surg 82:127–135Google Scholar
  8. Deeg P, Schad N, Haubitz I, Emde J V d, Schneider KW (1979) Operative Besserung der globalen und regionalen linksventrikulären Funktion bei koronarer Herzerkrankung. Z Kardiol 68:9, 649, Nr118Google Scholar
  9. Donato L (1973) Basic concepts of radiocardiography. Seminars in Nuclear Medicine, vol 3, no 2 (April)Google Scholar
  10. Donato L, Giuntini C, Lewis ML, Durand J, Rochester DF, Harvey RM, Cournand A (1962) Quantitative radiocardiography. I. Theoretical consideration. Circulation 26:174PubMedCrossRefGoogle Scholar
  11. Feinendegen LW, Becker V, Vyska K, Schicha H, Seipel L (1973) Minimal cardiac transit times — diagnostic radiocardiography in heart disease. J Nucl Biol Med 16:211Google Scholar
  12. Giuntini C, Lewis ML, Sales LA, Harvey RM (1963) A study of the pulmonary blood volume in man by quantitative radiocardiography. J Clin Invest 42:1589PubMedCrossRefGoogle Scholar
  13. Hellman CK (1978) Dynamic evaluation of ventricular function. Symposium on nuclear cardiology: Principles and applications, Milwaukee, October 1978Google Scholar
  14. Jenge JA, Uszler JM, Freeman R (1978) Upright exercise stress first pass radionuclide detection of coronary artery disease. 2nd international congress of nuclear medicine and biology. September 1978, p 95Google Scholar
  15. Jones RH, Sabiston DC, Bates BB, Morris JJ, Anderson PAW, Goodrich JK (1972) Quantitative radionuclide angiocardiography for determination of chamber to chamber cardiac transit times. Am J Cardiol 30:855–864PubMedCrossRefGoogle Scholar
  16. Jones RH, Rerych SK, Newman GE (1978) Noninvasive radionuclide procedures for diagnosis and management of myocardial ischemia. World J Surg 2:811–828PubMedCrossRefGoogle Scholar
  17. Jones RH, Rerych SK, Scholz PM, Newman GE, Goodrich JK (1979) Radionuclide angiocardiography. Barrington Publication, New YorkGoogle Scholar
  18. Kremers S, Kight J, Heck L (1978) Value of nitroglycerine radionuclide angiocardiography in preoperative evaluation of patients with coronary artery disease. 2nd international congress of nuclear medicine and biology, September 1978, p 23Google Scholar
  19. Maclntyre WJ (1978) Imaging devides and computers in nuclear cardiology. Symposium on nuclear cardiology: Principles and applications, Milwaukee, Ocotber 1978Google Scholar
  20. Marshall RC, Berger HJ, Reduto LR (1978) Variability in sequential measures of left ventricular performance assessed with radionuclide angiocardiography. Am J Cardiol 42:531–536CrossRefGoogle Scholar
  21. Nickel O, Schad N (1978a) Image analysis of the heart action recorded with a high speed multicrystal gamma camera. Med Prog Technol 5:1–7Google Scholar
  22. Nickel O, Schad N, Andrews EJ, Fleming JW, Mello M (1982) Scintigraphic measurement of ventricular volumes from the count density distribution. J Nucl Med 23:404–410PubMedGoogle Scholar
  23. Noelpp U, Schad N, Roesler HY (1977) Trendszintigraphie. Nucl Med XVI/5:232–237Google Scholar
  24. Parker JA, Treves S (1977) Radionuclide detection, localization, and quantitation of intracardiac shunts and shunts between the great arteries. Cardiovasc Dis XX:2Google Scholar
  25. Peter CA, Austin EH, Jones RH (1981) Effect of valve replacement for chronic mitral insuffiency on left ventricular function during vest and exercise. J Thorac Cardiovasc Surg 82:127PubMedGoogle Scholar
  26. Pikal W (1980) Die linksventrikuläre Wandbewegung vor und nach Nitroglyceringabe nach Myokard-infarktGoogle Scholar
  27. Prinzmetal M, Corday E, Bergman HC, Schwär L, Spritzler RJ (1948) Radiocardiography : A new method for studying blood flow through chambers of heart in human beings. Science 108:340PubMedCrossRefGoogle Scholar
  28. Reichart B, Schad N, Nickel O, Kemkes B, Kreuzer E (1982) Regional left ventricular function in the three main coronary artery territories at rest and during exercise. Klin Wochenschr 60:181–191PubMedCrossRefGoogle Scholar
  29. Reichart B, Schad N, Bougioukas G, Kemkes BM, Kreuzer E (1982) Valve replacement for chronic mitral insufficiency; long-term follow up using thechnetium pertechnetate scintigraphy. Int J Artef Org 5/3:173–176Google Scholar
  30. Reindl P, Schad N (1974) Untersuchungen zur Injectionstechnik für die Radiokardiographie. In: 12. Internationale Jahrestag der Ges für Nuklearmedizin, Munich, Ges für NuklearmedizinGoogle Scholar
  31. Rerych SK, Scholz PM, Newman GE (1978) Cardiac function at rest and during exercise in normal and in patients with coronary heart disease : evaluation by radionuclide angiocardiography. Ann Surg 187:7–22CrossRefGoogle Scholar
  32. Schad N (1967) Die intermittierende Kontrastmittel-injektion in das Herz. Thieme, StuttgartGoogle Scholar
  33. Schad N (1976) Nichtinvasive Darstellung der Wandbewegung und Schlagvolumenverteilung des linken Ventrikels nach Myocardinfarkt. Fortschr Roentgenstr 206:124–201Google Scholar
  34. Schad N (1977) Nontraumatic assessment of left ventricular wall motion and regional stroke volume after myocardial infarction. J Nucl Med 18:333–341PubMedGoogle Scholar
  35. Schad N, Nickel O (1978) Radionuclide angiography in coronary heart disease: where do we stand? Cardiovasc Radiol 1:27–35CrossRefGoogle Scholar
  36. Schad N, Nickel O (1979a) Assessment of ventricular function with first pass angiocardiography. Cardiovasc Radiol 2:149CrossRefGoogle Scholar
  37. Schad N, Nickel O (1976) Detection of regional flow disturbances with the gammacamera. In : Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland, Biomedical PressGoogle Scholar
  38. Schad N, Nickel O (1980a) Nuklearmedizinische Herzdiagnostik im Kindesalter. In: Hahn von K (Hrsg) Kirchheim, Mainz, S 53–57Google Scholar
  39. Schad N, Nickel O (1980b) Nichtinvasive Beurteilung der regionalen Funktion des linken Ventrikels. Radiologe 20:56–69Google Scholar
  40. Schad N, Nickel O (1981) Noninvasive Assessment of left ventricular function. In: Donner MW, Heuck FHW (eds) Radiology today 1. Springer, Heidelberg, New YorkGoogle Scholar
  41. Schmid DH (1978) First pass technique. Symposium on nuclear cardiology. Regensburg, September 1978Google Scholar
  42. Scholz P, Rerych St, Moran J, Newman G, Douglas J, Sabiston D, Jones R (1980) Quantitative radionuclide angiocardiography. Cathet Cardiovasc Diagn 6:265–283PubMedCrossRefGoogle Scholar
  43. Shields RA, Walton S, Wrigley C (1978) Leftventricular wall motion by first passage radionuclide angiocardiography. 2nd international congress of nuclear medicine and biology, September 1978, p 95Google Scholar
  44. Suzuki Y, Kanemoto N (1978) Noninvasive measurement of right ventricular ejection fraction with radionuclide angiocardiography. 2nd international congress of nuclear medicine and biology, September 1978, p 52Google Scholar
  45. Suzuki Y, Kanemoto N (1978) Noninvasive measurement of right ventricular ejection fraction with radionuclide angiography. 2nd international congress of nuclear medicine and biology, September 1978, p 52Google Scholar
  46. Tow DE, Parisi AF, Folland E (1978) Quantitative radionuclide (RN) assessment of left ventricular function (LVF): Precision and correlation with contrast angiography. 2nd international congress of nuclear medicine and biology, September 1978, p 52Google Scholar

Literatur

  1. Adam WE, Bitter F (1981a) Methods and instrumentation for imaging of cardiovascular function. 28th annual meeting society of nuclear medicine, Las Vegas, NevadaGoogle Scholar
  2. Adam WE, Bitter F (1981b) Advances in Heart Imaging. In: Medical Radionuclide Imaging 1980, IAEA, Vienna, pp 195–218Google Scholar
  3. Adam WE, Meyer G, Bitter F, Kampmann H, Stauch M, Paiva M (1974) Camera-kinematography: A nuclear medicine procedure for imaging heart kinetics. J Nucl Biol Med 18:53PubMedGoogle Scholar
  4. Adam WE, Sigel H, Geffers H, Kampmann H, Bitter F, Stauch M (1977) Analyse der regionalen Wandbewegung des linken Ventrikels bei koronarer Herzerkrankung durch ein nichtinvasives Verfahren (Radionuklid-Kinematographie). Z Kardiol 66:545–555PubMedGoogle Scholar
  5. Adam WE, Tarkowska A, Bitter F, Stauch M, Geffers H (1979) Equilibrium (gated) radionuclide ventriculography. Cardiovasc Radiol 2:161–173PubMedCrossRefGoogle Scholar
  6. Adam WE, Bitter F, Stauch M (1982) Contribution of nuclear cardiology to the diagnosis of the various stages of coronary artery diseases. In: Mathes H., Halhuber MJ (eds) Controversies in cardiac rehabilitation. Springer, Heidelberg Berlin New YorkGoogle Scholar
  7. Adam WE, Carl CH, Garvie NW, Bitter F, Sigel H Regional wall motion abnormalities and their evaluation by Radionuclide Ventriculography, to be publishedGoogle Scholar
  8. Ashburn WL, Kostuk WJ, Karliner JS, Peterson KL, Sobel BE (1973) Left ventricular volume and ejection fraction determination by radionuclide angiography. Semin Nucl Med 3:165–176PubMedCrossRefGoogle Scholar
  9. Bacharach SL, Green MV, Borer JS, Hyde JE, Farkas SP, Johnston GS (1979) Left-ventricular peak ejection rate, filling rate and ejection fraction-frame rate requirements at rest and exercise. J Nucl Med 20:183–188Google Scholar
  10. Bauer R, Bauer U, Sauer E, Langhammer H, Pabst HW (1981) In vivo/in vitro Markierung von Erythrozyten mit Tc-99m und ihre klinische Anwendung. Nuc Compact 12:18–25Google Scholar
  11. Bitter F, Adam WE (1973) A data acquisition and processing system for rapid dynamic investigations with a scintillation camera. In: Medical Radioisotope Scintigraphy. IAEA, ViennaGoogle Scholar
  12. Bitter F, Besch W, Schäfer N, Sigmund E (1971) Integrierte Herz-Kreislauf-Analyse mit Hilfe der quantitativen Funktionsszintigraphie. In: Horst W (ed) Frontiers of nuclearmedicine. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. Bitter F, Adam WE, Kampmann H, Meyer G, Weller R (1975) Automated selection of areas of interest in dynamic studies and camera-kinematography of the heart. In: Proceedings of the Fifth Symposium on Sharing of Computer Programs and Technology in Nucl Medicine. USERDA CONF-750124 Salt Lake CityGoogle Scholar
  14. Bitter F, Adam WE, Geffers H, Weller R, Ellebruch H (1979a) Synchronized steady state heart investigations. In: Garson J, Gordenne W, Merclin G (eds) Proceedings of the international symposium fundamentals in technical progress. Presses Universitaires de Liège, Liège/BelgiumGoogle Scholar
  15. Bitter F, Sigel H, Scheiderer WD, Adam WE, Geffers H (1979b) Die Bedeutung der Phase der regionalen Zeit-Aktivitätskurven in der Herzfunktions-szintigraphie. In: Schmidt HAE, Riccabona G (eds) Nuklearmedizin, Die klinische Relevanz der Nuklearmedizin. Schattauer, Stuttgart New York, S 331–337Google Scholar
  16. Bitter F, Adam WE, Geffers H, Weller R (1980) Die Fourieranalyse bei der Auswertung von Herzuntersuchungen. In: Proceed. 7. Frühjahrstagung Deutsche Gesellschaft für Med Dokumentation, Informatik und Statistik, EV, MünchenGoogle Scholar
  17. Bitter F, Weller H, Adam WE (1981) Interaktive versus automatische Befundauswertung und Präsentation. 19. Int Jahrestagung der Ges für Nuklearmedizin, Bern. Schattauer, Stuttgart New YorkGoogle Scholar
  18. Borer JS, Bacharach SL, Green MV, Kent KM, Epstein SE, Johnston GS (1977) Real-time radionuclide cineangiography in the non-invasive evaluation of global and regional left ventricular function at rest and during exercise in patients with coronary-artery disease. N Engl J Med 296:839–844PubMedCrossRefGoogle Scholar
  19. Bossuyt A, Deconinck F, Lepoudre RL (1979) The temporal Fourier transform applied to functional isotopic imaging. Proc VI International Conference on information processing in Medical Imaging, ParisGoogle Scholar
  20. Breuel H-P, Felix R, Knopp R, Otten H, Simon H, Winkler C (1978) Funktionsszintigraphie der Kontraktion des linken Ventrikels. ROEFO 129:317–320CrossRefGoogle Scholar
  21. Caldwell JH, Hamilton GW, Sherman SG (1980) The detection of coronary artery disease with radionuclide techniques : A comparison of rest exercise thallium imaging and ejection fraction response. Circulation 61:610PubMedGoogle Scholar
  22. Donato L, Giuntini C, Bianchi R, Maseri A (1964) Quantitative radiocardiography for the measurement of pulmonary blood volume. In: Kinsley RM, Tauxe WN (eds) Dynamic clinical studys with radioisotopes. USAEC, Washington, p 267Google Scholar
  23. Feinendegen LE (1978) Minimal transit times. In: Nucl Med, vol 17. Schattauer, Stuttgart New York, p 191Google Scholar
  24. Frais MA, Botvinick E, O’Connel JW, Shosa DW, Scheinmann NM, Hattner RS (1981) The phase image: an accurate means of detecting and localizing abnormal foci of ventricular activation. J Nucl Med 22:18Google Scholar
  25. Freundlieb CH, Hoeck A, Vyska K, Feinendegen LE, Machulla HJ, Stoecklin G (1977) Use of 17-C-123-I-labelled heptadecanoic acid for noninvasively measuring myocardiac metabolism. In: Proceed 15th international annual meeting of the society of nuclear medicine. Schattauer, Stuttgart New York, p 216Google Scholar
  26. Geffers H, Stauch M (1979) Erfassung von Regurgitationsfraktionen mit Hilfe der Radionuklid-Ven-trikulographie. Z Kardiol 68:491PubMedGoogle Scholar
  27. Geffers H, Meyer G, Bitter F, Adam WE (1975) Analysis of heart function by gated blood pool investigations (Camera-Kinematography). In: Information processing in scintigraphy, proceedings of the IV. International Conference Orsay, pp 462–465Google Scholar
  28. Geffers H, Adam WE, Bitter F, Sigel H, Kampmann H (1977) Data processing and functional imaging in radionuclide ventriculography. In: Raynaud C, Todd-Pokropek A (eds) Information processing in medical imaging, proceedings of the fifth International Conference, Vanderbilt University, Nashville/TennesseeGoogle Scholar
  29. Geffers H, Adam WE, Bitter F, Sigel H, Stauch M (1978) Radionuklid-Ventrikulographie. I. Grundlagen und Methoden. Nuklearmedizin 17. Schattauer, Stuttgart New York, S 206Google Scholar
  30. Goris ML (1978) Non interactive identification of the left ventricular area. In: Nuclear cardiology: Selected computer aspects. SNM, Atlanta/Georgia, pp 139–145Google Scholar
  31. Goris ML, McKillop JH, Briandet PhA (1981) A fully automated determination of the left ventricular region of interest in nuclear angiocardiography. Cardiovasc Intervent Radiol 4:117–123PubMedCrossRefGoogle Scholar
  32. Gould KL, Lipscomb K (1974) Effects of coronary stenoses on coronary flow reserve and resistance. Am JCardiol 34:48CrossRefGoogle Scholar
  33. Green MV, Ostrow HG, Douglas MA, Myers RW, Scott RN, Bailey JJ, Johnston GS (1975) High temporal resolution ECG-gated scintigraphic angiography. J Nucl Med 16:95PubMedGoogle Scholar
  34. Green MV, Bacharach SL, Douglas MA, Borer JS, Johnston GS (1978) Sources of virtual background in multi-image Blood pool studies. In: Nuclear cardiology: Selected computer aspects. SNM, Atlanta/Georgia, pp 97–106Google Scholar
  35. Hamilton RG, Alderson OPh (1977) A Comparative Evaluation of Techniques for Rapid and Efficient in Vivo Labeling of Red Cells with 99m-Tc-Pertechnetate. J Nucl Med 18:1010PubMedGoogle Scholar
  36. Hamilton GW, Williams DL, Caldwell JH (1978) Frame-rate requirements for recording time activity curves by radionuclide angiography. In: Nuclear cardiology: Selected computer aspects. SNM, Atlanta/GeorgiaGoogle Scholar
  37. Hammermeister KE, Brook RC, Warbasse JR (1974) The rate of change of left ventricular volume in man. Circulation 49:729–737PubMedGoogle Scholar
  38. Hoffmann G, Kleine N (1965) Eine neue Methode zur unblutigen Messung des Schlagvolumens am Menschen über viele Tage mit Hilfe von radioaktiven Isotopen. Verh Dtsch Ges Kreislaufforsch 31:93–96PubMedGoogle Scholar
  39. Holmann BL, Wynne J, Idoine J, Zielonka J, Neill J (1979) The paradox image. A noninvasive index of regional left-ventricular dyskinesis. J Nucl Med 20:1237Google Scholar
  40. Hör G, Kanemoto N, Standke R, Maul FD, Klepzig H, Kober G, Kaltenbach M (1980) Transluminale Angioplastie : Erfolgskontrolle durch Verfahren der Nuklearmedizin nach nicht-operativer Dilatation kritischer Koronararterienstenosen. Herz 5:168PubMedGoogle Scholar
  41. Hundeshagen H (1975) Die digitale Radionuklid-Angiocardiographie. In: Schmidt HAE, Pabst G, Hör G (Hrsg) Nuklearmedizin, Fortschritte der Nuklearmedizin in klinischer und technologischer Sicht. Schattauer, Stuttgart, S 17–26Google Scholar
  42. Klein C, Brill G, Oberhausen E, Bette L (1978) Radiokardiographische Bestimmung des Herzminutenvolumens und der Ejectionsfraktion. Ein Vergleich mit konventionellen kardiologischen Untersuchungsverfahren. Z Kardiol 67:92–98PubMedGoogle Scholar
  43. Knopp R, Breuel H-P (1979) Functional scintigraphy of the heart, technical basis and clinical results. In: Garson J, Gordenne W, Marchin G (eds) Fundamentals in technical progress, Liège, Belgium, vol III 6.1. Presses Universitaires de Liège, Liège/BelgiumGoogle Scholar
  44. Knopp R, Breuel H-P, Schmidt H, Winkler C (1978) Funktionsszintigraphie des Herzens. I. Daten-technische Grundlagen und Methodik. ROEFO 128:44–47CrossRefGoogle Scholar
  45. Korubin V, Maisey MN, McIntyre PA (1972) Evaluation of technetium labelled red cells for determination of red cell volume in man. J Nucl Med 13:760–762PubMedGoogle Scholar
  46. Kress P, Geffers H, Stauch M, Nechwatal W, Sigel H, Bitter F, Adam WE (1981) Evaluation of aortic mitral valve regurgitation by radionuclide ventriculography : Comparison with the method of Sandier and Dodge. Clin Cardiol 4:5–10PubMedCrossRefGoogle Scholar
  47. Kress P, Bitter F, Stauch M, Garvie NW, Nechwatal W, Siegel H, Adam WE (1982) Radionuclide Ventriculography : A Noninvasive Method for the Detection and Quantification of Left-to-Right Shunts in Atrial Septal Defect. Clin Cardiol 5:192–200PubMedGoogle Scholar
  48. Luig H, Emrich D, Breuel H-P, Strauer B-E, Neubaur J, Kisselbach VJ (1975) Non-invasive determination of volume equivalent curves of the left ventricle. In: Dynamic studies with radioisotopes in medicine. IAEA, Vienna, pp 207–217Google Scholar
  49. Luig H, Bartella R, Carstens B, Domovitz S, Reunter R, Emrich D, Facorro L, Schicha H, Graf M, Karsch KR, Rentrop P, Kreuzer H (1979) Nuklearmedizinische Bestimmung linksventrikulärer Volumenkurven ohne Untergrundkorrektur und ihre Validisierung durch direkten Vergleich mit biplan lävokardiographisch ermittelten Auswurfsfraktionen. In: Nucl Med vol XVIII. Schattauer, Stuttgart New York, S 120–124Google Scholar
  50. Pavel DG, Zimmer AM, Patterson VN (1977) In Vivo Labelling of Red Blood Cells with 99m-Tc: A new approach in blood pool visualization. J Nucl Med 18:305–308PubMedGoogle Scholar
  51. Pavel DG, Smyrin S, Lam W, Byrom E, Sheikh A, Rosen K (1980) Ventricular phase analysis of radionuclide gated studies. Am J Cardiol 45:398CrossRefGoogle Scholar
  52. Powers ThA, Bowen RD, Price RR, Patton JA (1982) The effects of gating delays on ejection estimates. J Nucl Med 23:15–16PubMedGoogle Scholar
  53. Proudfit WL, Shirey LK, Sones FM (1966) Selective cine coronary angiography: Correlation with clinical findings in 1000 patients. Circulation 33:901PubMedGoogle Scholar
  54. Rigo P, Alderson PO, Robertson RM, Becker LC, Wagner HN (1979) Measurement of aortic and mitral regurgitation by gated cardiac blood scans. Circulation 60:303Google Scholar
  55. Schelbert HE, Phelps ME (1980) Physiologic tomography, a new means for the non-invasive measurement of myocardial metabolism. Blood flow and function. Eur Nucl Med 5:209CrossRefGoogle Scholar
  56. Stauch M, Sigel H, Kress P, Nechwatal W, Bitter F, Adam WE (1981) Einsatz von nuklearmedizi nischen Methoden in der kardiologischen Diagnostik. Internistische Welt 5:197Google Scholar
  57. Strauss HW, Zaret BL, Hurley PJ, Natarajan TK, Pitt B (1971) A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterisation. AJ Cardiol 28:575–580CrossRefGoogle Scholar
  58. Swanson D, Rogers WL, Clare JM, Brown ML, Pitt B (1978) Clinical comparison of cardiac blood pool visualization with technetium-99m red blood cells labeled in vivo and with technetium-99m human serum albumin. J Nucl Med 19:796–803PubMedGoogle Scholar
  59. Tarkowska A, Adam WE, Bitter F, Geffers H, Garvie NW (1982) Regional evaluation of the left ventricular wall motion by radionuclide ventriculography. Br J Radiol 55:120–124CrossRefGoogle Scholar
  60. Taylor GJ, Humphries JO, Mellits ED (1980) Predictors of clinical course, coronary anatomy and left ventricular function after recovery from acute myocardial infarction. Circulation 62:960PubMedGoogle Scholar
  61. Thrall JH, Freitas JE, Swanson D, Rogers WL, Clare JM, Brown ML, Pitt, B (1978) Clinical comparison of cardiac blood pool visualization with Tc-99m red blood cells labeled in vivo and with Tc-99m human serum albumin. J Nucl Med 19:796PubMedGoogle Scholar
  62. Verba JW, Bornstein I, Alazraki NP, Thaylor A, Bhargava V, Shabetai R, Le Winter M (1979) A new computer program for the extraction of global and regional behaviour of all four cardiac chambers from gated radionuclide data. J Nucl Med 20:665Google Scholar
  63. Wackers FJT, von der Schoot JB, Sokole EB, Samson G, Niftrik GJC v, Lie KI, Durrer D, Wellens HJJ (1975) Noninvasive visualization of acute myocardial infarction in man with Thallium-201, Br Heart J 37:741PubMedCrossRefGoogle Scholar
  64. Williams DL, Hamilton GW (1978) The effect of errors in determining left ventricular ejection fraction from radionuclide counting data. In: Society of Nuclear Medicine (eds) Nuclear Cardiology: selected computer aspects. SNM, Atlanta/Georgia, pp 107–117Google Scholar

References

  1. Adelstein SJ, Maseri A (1977) Radioindicators for the study of the heart: principles and applications. Progr Cardiovasc Dis 20:3–17CrossRefGoogle Scholar
  2. Amende I, Simon R, Hood WP, Lichtlen PR (1979) The effects of the beta-blocker Atenolol and nitroglycerin on left ventricular function and geometry in man. Circulation 60:836–849PubMedGoogle Scholar
  3. Andersen AM, Ladefoged J (1967) Partition coefficient of 133xenon between various tissues and blood in vivo. Scand J Clin Lab Invest 19:72PubMedCrossRefGoogle Scholar
  4. Anger HO (1963) Gamma-ray and positron scintillation camera. Nucleonics 21:56–68Google Scholar
  5. Ashburn WL, Braunwald E, Simon AL, Gault JH (1970) Myocardial perfusion imaging in man using 99mTc-MAA. J Nucl Med 11:618Google Scholar
  6. Ashburn WL, Braunwald E, Simon AL (1971) Myocardial perfusion imaging with radioactive-labeled particles injected directly into the coronary circulation of patients with coronary artery disease. Circulation 44:851–865PubMedGoogle Scholar
  7. Bassingthwaighte JB (1977) Physiology and theory of tracer washout techniques for the estimation of myocardial blood flow: Flow estimation from tracer washout. Prog Cardiovasc Dis 20:165–189PubMedCrossRefGoogle Scholar
  8. Bassingthwaighte JB, Strandell T, Donald DE (1968) Estimation of coronary blood flow by washout of diffusible indicators. Circ Res 23:259–278PubMedGoogle Scholar
  9. Becker LC, Fortuin NJ, Pitt B (1971) Effect of ischemia and antianginal drugs on the distribution of radioactive microspheres in the canine left ventricle. Circ Res 28:263PubMedGoogle Scholar
  10. Berne RM, Rubio R (1974) Regulation of coronary blood flow. Adv Cardiol 12:303PubMedGoogle Scholar
  11. Berne RM, Rubio R (1979) Coronary circulation. In: Berne RM, Sperelakis N, Geiger StR (eds) Handbook of Physiology, section 2: The Cardiovascular System, Vol I, The Heart. American Physiological Society, Bethesda Maryland, pp 873–952Google Scholar
  12. Bernstein L, Friesinger GC, Lichtlen PR, Ross RS (1966) The effect of nitroglycerin on the systemic and coronary circulation in man and dogs. Myocardial blood flow measured with Xenon133. Circulation 33:107–116PubMedGoogle Scholar
  13. Bing RJ, Hammond MM, Handelsman JC, Pokers SR, Spencer FC, Eckenhoff JC, Goodale JH, Hafkenschiel JH, Kety SS (1949) The measurement of coronary blood flow, oxygen consumption and efficiency of the left ventricle in man. Am Heart J 38:1–24PubMedCrossRefGoogle Scholar
  14. Bing RJ, Bennish A, Blümchen G, Cohen A, Callagher JP, Zaleski JL (1964) The determination of coronary flow equivalent with coincidence counting technic. Circulation 29:833PubMedGoogle Scholar
  15. Braunwald E (1969) Thirteenth Bowditch lecture: The determinants of myocardial oxygen consumption. Physiologist 12:65–93PubMedGoogle Scholar
  16. Buckberg GD, Luck JC, Payne BD (1971) Some sources of errors in measuring myocardial blood flow with radioactive microspheres. J Appl Physiol 31:598–604PubMedGoogle Scholar
  17. Budinger TF, Rollo FD (1977) Physics and instrumentation. Prog Cardiovasc Dis 20:19–53PubMedCrossRefGoogle Scholar
  18. Cannon PJ (1975) Radioisotopic studies of the regional myocardial circulation. Circulation 51:955–963PubMedGoogle Scholar
  19. Cannon PJ, Haft JI, Johnson PM (1969) Visual assessment of regional myocardial perfusion utilizing radioactive xenon and scintillation photography. Circulation 40:277–288PubMedGoogle Scholar
  20. Cannon PJ, Dell RB, Dwyer EM (1972) Measurement of regional myocardial perfusion in man with 133xenon and a scintillation camera. J Clin Invest 51:964, 978PubMedCrossRefGoogle Scholar
  21. Cannon PJ, Sciacca RR, Brust JCM (1974) Measurement of regional cerebral blood flow with 133xenon and a multiple crystal scintillation camera. Stroke 5:371PubMedCrossRefGoogle Scholar
  22. Cannon PJ, Schmidt DH, Weiss MB (1975a) The relationship between regional myocardial perfusion at rest and arteriographic lesions in patients with coronary atherosclerosis. J Clin Invest 56:1442CrossRefGoogle Scholar
  23. Cannon PJ, Sciacca RR, Fowler DL (1975b) Measurement of regional myocardial blood flow in man; Description and critique of the method using Xenon-133 and a scintillation camera. Am J Cardiol 36:783CrossRefGoogle Scholar
  24. Cannon PJ, Weiss MB, Sciacca RR (1977) Myocardial blood flow in coronary artery disease: Studies at rest and during stress with inert gas washout techniques. Prog Cardiovasc Dis 20:95–120PubMedCrossRefGoogle Scholar
  25. Cohen LS, Elliott WC, Gorlin R (1964) Measurement of myocardial blood flow using krypton-85. Am J Physiol 206:997–999PubMedGoogle Scholar
  26. Conn HL (1961) Equilibrium distribution of radioxenon in tissue: Xenon-hemoglobin association curve. J Appl Physiol 16:1065–1070PubMedGoogle Scholar
  27. Conti CR, Pitt B, Gundel WD, Friesinger GC, Ross RS (1970) Myocardial blood flow in pacing-induced angina. Circulation 42:815–825PubMedGoogle Scholar
  28. Dirschinger J, Fleck E, Redl A, Brandt R, Späth M, Mannes G, Recke S, Hall D, Rudolph W (1977) Effects of sodium nitroprusside and isosor-biddinitrate on regional myocardial blood flow in patients with coronary artery disease and left ventricular asynergy. Herz 2:71–74Google Scholar
  29. Dirschinger J, Fleck E, Rudolph W (1978) Die Bedeutung der Herzfrequenzsenkung für die Wirkung von Betarezeptorenblockern bei koronarer Herzerkrankung. Z Kardiol 67:227 (Abstract)Google Scholar
  30. Dwyer EM, Dell RB, Cannon PJ (1973) Regional myocardial blood flow in patients with residual anterior and inferior transmural infarction. Circulation 48:924–935PubMedGoogle Scholar
  31. Endo M, Yamazaki T, Konno S, Hiratsuka H, Akimoto T, Tanaka T, Sakakibara S (1970) The direct diagnosis of human myocardial ischemia using 131I-MAA via the selective coronary catheter. Am Heart J 80:498–506PubMedCrossRefGoogle Scholar
  32. Engel HJ (1979) Assessment of regional myocardial blood flow by the precordial 133Xenon clearance technique. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 58–92Google Scholar
  33. Engel HJ, Lichtlen PR (1981) Beneficial enhancement of coronary blood flow by Nifedipine; comparison with nitroglycerin and betablocking agents. Am J Med 71:658–666PubMedCrossRefGoogle Scholar
  34. Engel HJ, Heim R, Liese W, Hundeshagen H, Lichtlen P (1976) Regional myocardial perfusion at rest in coronary disease assessed by microsphere scintigraphy and inert gas clearance. Am J Cardiol 37:134 (Abstract)CrossRefGoogle Scholar
  35. Engel HJ, Hundeshagen H, Lichtlen P (1977a) Transmural myocardial infarction in young women taking oral contraceptives. Evidence of reduced regional coronary flow in spite of normal coronary arteries. Br Heart J 39:477–484CrossRefGoogle Scholar
  36. Engel HJ, Lichtlen PR, Hundeshagen H (1977b) Effects of coronary obstructions and segmental LV dysfunction on regional myocardial blood flow. Circulation [Suppl III] 55/56:10 (Abstract)Google Scholar
  37. Engel HJ, Wolf R, Hundeshagen H, Lichtlen P (1979) Einfluß von Nitroglyzerin auf die regionale Myokarddurchblutung bei Patienten mit pacinginduzierter Myokardischämie. Z Kardiol 68:283 (Abstract)Google Scholar
  38. Engel HJ, Wolf R, Hundeshagen H, Lichtlen PR (1980) Different effects of nitroglycerin and Nifedipine on regional myocardial blood flow during pacing-induced angina pectoris. Eur Heart J [Suppl B] 1:53–58Google Scholar
  39. Engel HJ, Lichtlen PR, Hundeshagen H (1982) Relation between coronary obstructions, left ventricular wall motion and regional myocardial blood flow in single-vessel coronary artery disease. Z Kardiol 71:326–333PubMedGoogle Scholar
  40. Fleck E, Dirschinger J, Redl A, Loracher C, Hall D, Froer KL, Rudolph W (1977) Alterations in regional myocardial blood flow and ventricular function induced by betablocking agents and calcium antagonists in patients with coronary artery disease. Herz 2:75–80Google Scholar
  41. Ganz W, Tamura K, Marcus HS, Donoso R, Yoshida S, Swan HJC (1971) Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 44:181PubMedGoogle Scholar
  42. Goldberg AD, Crawley JCW, Raftery EB, Yacoub MH (1975) Myocardial blood flow following saphenous vein bypass surgery. Circulation 51/52:1–215–219Google Scholar
  43. Gould KL, Lipscomb K (1974) Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34:48–55PubMedCrossRefGoogle Scholar
  44. Grames GM, Jansen C, Gander M, Biland HC, Judkins MP (1973) The safety of the direct coronary injection of radiolabeled particles. J Nucl Med 15:2Google Scholar
  45. Gregg DE (1974) The natural history of coronary collateral development. Circ Res 35:335PubMedGoogle Scholar
  46. Helfant RH, Vokonas PS, Gorlin R (1971) Functional importance of the human coronary collateral circulation. N Engl J Med 284:1277PubMedCrossRefGoogle Scholar
  47. Herd JA, Hollenberg M, Thorburn GD, Kopald HH, Barger AC (1962) Myocardial blood flow determined with krypton85 in unanesthetized dogs. Am J Physiol 203:122–124PubMedGoogle Scholar
  48. Hirzel HO, Krayenbühl HP (1974) Validity of the 133Xenon method for measuring coronary blood flow: Comparison with coronary sinus outflow determined by an electromagnetic flow-probe. Pfluegers Arch 349:159–169CrossRefGoogle Scholar
  49. Hoffmann JIE, Buckberg GD (1976) Transmural variations in myocardial perfusion. In: Yu PN, Goodwin JF (eds) Progress in cardiology. Lea & Febiger, Philadelphia, pp 37–89Google Scholar
  50. Holman BL, Adams DF, Jewitt D, Eldh P, Idoine J, Cohn PF, Gorlin R, Adelstein SJ (1974) Measuring regional myocardial blood flow with 133Xe and the Anger camera. Radiology 112:99–107PubMedGoogle Scholar
  51. Holmberg S, Serzysko W, Varnauskas E (1971) Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease. Acta Med Scand 190:465–480PubMedCrossRefGoogle Scholar
  52. Hundeshagen H, Geisler S Dittmann P Lichtlen P Engel HJ (1976) Quantitative scintigraphic display of myocardial blood flow: Technique and clinical evaluation. Eur J Nucl Med 1:107–115PubMedGoogle Scholar
  53. Johnson LL, Weiss MB, Ellis K, Cannon PJ (1975) Reduced myocardial blood flow (MBF) in aortic stenosis (AS) Circulation 51/52:II-139Google Scholar
  54. Jörgensen CR, Kitamura K, Gobel FL, Taylor HJ, Wang Y (1971) Long-term precision of the N2O method for coronary flow during heavy upright exercise. J Appl Physiol 30:338PubMedGoogle Scholar
  55. Kety SS (1951) Theory and applications of exchange of inert gas at lungs and tissues. Pharmacol Rev 3:1–41PubMedGoogle Scholar
  56. Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143:53–66Google Scholar
  57. Klein MD, Cohen LS, Gorlin R (1965) Krypton-85 myocardial blood flow: Precordial scintillation versus coronary sinus sampling. Am J Physiol 209:705PubMedGoogle Scholar
  58. Klocke FJ (1976) Clinical measurements of coronary blood flow. In: Yu PN, Goodwin JF (eds) Progress in cardiology. Lea & Febiger, Philadelphia, pp 91–140Google Scholar
  59. Klocke FJ, Koberstein RC, Pittman DE (1968) Effects of heterogeneous myocardial perfusion on coronary venous H2-desaturation curves and calculations of coronary flow. J Clin Invest 47:2711PubMedCrossRefGoogle Scholar
  60. Klocke FJ, Rosing DR, Pittman DE (1969) Inert gas measurement of coronary blood flow. Am J Cardiol 23:548PubMedCrossRefGoogle Scholar
  61. Klocke FJ, Bunnell IL, Greene DG, Wittenberg SM, Visco JP (1974) Average coronary blood flow per unit weight of left ventricle in patients with and without coronary artery disease. Circulation 50:547–559PubMedGoogle Scholar
  62. Knoebel SB, McHenry PL (1971) Myocardial blood flow measured by a coincidence counting system and single bolus of 84Rb. Arch Intern Med 127:767CrossRefGoogle Scholar
  63. Korbuly DE, Formanek A, Gypser G, Moore R, Ovitt TW, Tuna N, Amplatz K (1975) Regional myocardial blood flow measurements before and after coronary bypass surgery. A preliminary report. Circulation 52:38–45PubMedGoogle Scholar
  64. Korhola O (1974) Myocardial scintigraphy and estimation of regional blood flow with xenon 133. Acta Radiol [Suppl] 337Google Scholar
  65. L’Abbate A, Maseri A, Ballestra AM, Michelassi C, Marzilli M, Camici P, Trivella MG (1981) Stochastic and exponential analysis of precordial washout curves for myocardial flow measurement. Experimental evaluation. Circ Res 49:41–51PubMedGoogle Scholar
  66. Lassen NA (1964) Assessment of tissue radiation dose in clinical use of radioactive inert gases with examples of absorbed doses from 3-H, 83-Kr, 133-Xe. Minerva Nucl 8:211–217Google Scholar
  67. Lichtlen P (1975) Coronary and left ventricular dynamics under nifedipine in comparison to nitrates, betablocking agents and dipyridamole. In: Lochner W, Braasch W, Kroneberg G (eds) Second International Adalat Symposium: New therapy of ischemic heart disease. Springer, Berlin Heidelberg New York, pp 212–224Google Scholar
  68. Lichtlen P (1979) Koronarangiographie. Perimed, ErlangenGoogle Scholar
  69. Lichtlen P, Albert H, Moccetti T (1971) Left ventricular dynamics at rest and during exercise under different beta-blocking agents (Propranolol, LB 46) in patients with severe coronary artery disease. In: Kaltenbach M, Lichtlen P (eds) Coronary heart disease, International Symposium in Frankfurt. Thieme, Stuttgart, pp 205–221Google Scholar
  70. Lichtlen P, Moccetti T, Halter J, Schönbeck M, Senning A (1972a) Postoperative evaluation of myocardial blood flow in aorta-to-coronary artery vein bypass grafts using the xenon-residue detection technic. Circulation 46:445–455Google Scholar
  71. Lichtlen P, Moccetti T, Halter J (1972b) Myocardial blood flow in man as shown by the precordial xenon-clearance technique. In: Maseri A (ed) Myocardial blood flow in man: Methods and significance in coronary disease. Minerva Medica, Torino, pp 309–320Google Scholar
  72. Lichtlen P, Halter J, Gattiker K (1974) The effect of isosorbiddinitrate on coronary flow, coronary resistance and left ventricular dynamics under exercise in patients with coronary artery disease. Basic Res Cardiol 69:402–421PubMedCrossRefGoogle Scholar
  73. Lichtlen P, Engel HJ, Hundeshagen H (1976a) Regional myocardial blood flow in patients without coronary artery disease, yet proven myocardial infarctions. Am J Cardiol 37:151 (Abstract)CrossRefGoogle Scholar
  74. Lichtlen P, Engel HJ, Amende I, Rafflenbeul W, Simon R (1976b) Mechanisms of various antianginal drugs. Relationship between regional flow behavior and contractility. In: Jatene AD, Lichtlen PR (eds) 3rd International Adalat Symposium: New therapy of ischemic heart disease. Excerpta Medica, Amsterdam, pp 14–29Google Scholar
  75. Lichtlen P, Engel HJ, Hundeshagen H (1977) Regional myocardial blood flow in normal and poststenotic areas after nitroglycerin, betablockade (atenolol), coronary dilatation (dipyridamole) and calcium antagonism (nifedipine). Herz 2:81–86Google Scholar
  76. Lichtlen PR (1977) Myocardial blood flow during exercise in patients with coronary artery disease. Herz 2:31–37Google Scholar
  77. Lichtlen PR, Engel HJ, Hundeshagen H (1978a) Clinical application and results of the assessment of coronary blood flow by the regional precordial xenon residue detection technique. Nucl Med 17:161–171Google Scholar
  78. Lichtlen PR, Wolf R, Engel HJ, Hundeshagen H (1978b) Coronary dilatory reserve of severely obstructed coronary arteries and collaterals. Circulation [Suppl II] 57/58:193 (Abstract)Google Scholar
  79. Lichtlen PR, Engel HJ (1979) Assessment of regional myocardial blood flow using the inert gas washout technique. Cardiovasc Radiol 2:203–216PubMedCrossRefGoogle Scholar
  80. Lichtlen PR, Engel HJ, Wolf R, Hundeshagen H (1979) Effect of Nifedipine on regional myocardial blood flow at rest and in pacing-induced ischemia. Circulation 59/60:II-249Google Scholar
  81. Liese W, Engel HJ, Heim R, Hundeshagen H, Lichtlen P, Rafflenbeul W (1975) Diagnostische Wertigkeit der Perfusionsszintigraphie des Myokards bei Koronarsklerose. Schweiz Med Wochenschr 105:1474–1476PubMedGoogle Scholar
  82. Liese W, Engel HJ, Rafflenbeul W, Hundeshagen H, Lichtlen P (1977) Bedeutung der Myokard-Perfusionsszintigraphie in Diagnostik und Bewertung der koronaren Herzkrankheit. Med Klin 72:1837–1845PubMedGoogle Scholar
  83. Logan SE (1974) The relationship between coronary perfusion pressure, flow, and resistance in stenosed human coronary arteries: The critical importance of small changes in % stenosis. Am J Cardiol 33:153CrossRefGoogle Scholar
  84. Maddox DE, See JR, Holman BL, Adams DF, Cohn PF (1976) Effect of coronary collaterals on regional myocardial blood flow. Circulation [Suppl II] 53/54:231 (Abstract)Google Scholar
  85. Martin LG, Larose JH, Sybers RG (1973) Myocardial perfusion imaging with 99mTc-albumin microspheres. J Nucl Med 107:367Google Scholar
  86. Maseri A (1972) Myocardial flow by precordial residue detection following intracoronary slug injection of radioactive diffusible indicators. In: Maseri A (ed) Myocardial blood flow in man: Methods and significance in coronary disease. Proceedings of an International Symposium held in Pisa. Minerva Medica, Torino, pp 145–156Google Scholar
  87. Maseri A (1974a) Myocardial blood flow in acute ischaemia and its measurement. In: Oliver MF (ed) Modern trends in cardiology. Butterworths, London 3rd ed.Google Scholar
  88. Maseri A (1974b) Correction of recirculation in regional blood flow studies by residue detection. J Appl Physiol 36:375Google Scholar
  89. Maseri A (1976) Radioactive tracer techniques for evaluating coronary flow. In: Yu PN, Goodwin JF (eds) Progress in cardiology. Lea & Febiger, Philadelphia, pp 141–168Google Scholar
  90. Maseri A, Mancini P, L’Abbate A (1971) Method for regional dynamic study of myocardial blood flow in man. J Nucl Biol Med 15:54–57PubMedGoogle Scholar
  91. Maseri A, Pesola A, L’Abbate A, Contini C (1974) Contribution of recirculation and fat diffusion to myocardial washout curves obtained by external counting in man; stochastic versus monoexponential analysis. Circ Res 35:826PubMedGoogle Scholar
  92. Maseri A, L’Abbate A, Pesola A, Michelassi C, Marzilli M, De Nes M (1977) Regional myocardial perfusion in patients with atherosclerotic coronary artery disease, at rest and during angina pectoris induced by tachycardia. Circulation 55:423–433PubMedGoogle Scholar
  93. McIntyre WJ, Cannon PJ, Ashburn WL (1975) Measurements of regional myocardial perfusion. In: Pierson RH, Kriss JP, Jones RH, McIntyre WJ (eds) Quantitative nuclear cardiology. Wiley, New York, p 170Google Scholar
  94. Moccetti T, Halter J, Lichtlen P (1972) Koronare und linksventrikuläre Dynamik dreier Substanzen mit unterschiedlicher β-blockierender Wirkung: Propranolol, Pindolol und Practolol. Schweiz Med Wochenschr 102:422–425PubMedGoogle Scholar
  95. Moir TW (1972) Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circ Res 30:621PubMedGoogle Scholar
  96. Mösslacher H, Slany J, Imhof H (1976) Correlation between coronary angiography and determination of regional myocardial perfusion in coronary patients using the xenon clearance. In: Lichtlen PR (ed) Coronary angiography and angina pectoris. Thieme, Stuttgart, pp 284–291Google Scholar
  97. Nentwig C, Jordan K (1971) Verbeserung des zeitlichen Auflösungsvermögens einer Gammakamera. In: Pabst HW (Hrsg) Nuklearmedizin. Schattauer, Stuttgart, p 309Google Scholar
  98. Parker JO, West RO, DiGiorgi S (1971) The effect of nitroglycerin on coronary blood flow and the hemodynamic response to exercise in coronary artery disease. Am J Cardiol 27:59PubMedCrossRefGoogle Scholar
  99. Parkey RW, Lewis SE, Stokely EM, Bonte FJ (1972) Compartmental analysis of the 133 xenon regional myocardial blood flow curve. Radiology 104:425–426PubMedGoogle Scholar
  100. Pitt A, Friesinger GC, Ross RS (1969) Measurement of blood flow in the right and left coronary artery bed in humans and dogs using the 133Xenon technique. Cardiovasc Res 3:100–106PubMedCrossRefGoogle Scholar
  101. Rafflenbeul W, Heim R, Dzuiba M, Henkel B, Lichtlen P (1976) Morphometric analysis of coronary arteries. In: Lichtlen PR (ed) Coronary angiography and angina pectoris. Thieme, Stuttgart, pp 255–265Google Scholar
  102. Rafflenbeul W, Smith LR, Rogers WJ, Mantle JA, Rackley ChE, Russell RO (1979) Quantitative coronary arteriography. Coronary anatomy of patients with unstable angina pectoris reexamined 1 year after optimal medical therapy. Am J Cardiol 43:699–707PubMedCrossRefGoogle Scholar
  103. Ross RS, Lichtlen PR, Bernstein L, Ginn WM, Ueda K (1963) Selective coronary arteriography in man, correlated with clinical electrocardiographic and physiological studies. Circulation 28:793 (Abstract)Google Scholar
  104. Ross RS, Ueda K, Lichtlen PR, Rees JR (1964) Measurement of myocardial blood flow in animals and man by selective injection of radioactive inert gas into the coronary arteries. Circ Res 15:28–41PubMedGoogle Scholar
  105. Rubio R, Berne RM, Katori M (1969) Release of adenosine in reactive hyperemia of the dog heart. Am J Physiol 216:56PubMedGoogle Scholar
  106. Rudolph W, Fleck E, Dirschinger J, Redl A (1977) Regional myocardial blood flow determined by the 133Xenon washout technique with respect to coronary artery stenoses and wall motion abnormalities. Herz 2:16–22Google Scholar
  107. Schaper W, Wüsten B (1979) Collateral circulation. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 415–470Google Scholar
  108. Schelbert HR, Ashburn WL, Covell JW, Simon AL, Braunwald E, Ross J (1971) Feasibility and hazards of the intracoronary injection of radioactive serum-albumin MAA for the external myocardial perfusion imaging. Invest Radiol 3:79Google Scholar
  109. Schmidt DH, Weiss MB, Casarella WJ, Fowler DL, Sciacca RR, Cannon PJ (1976) Regional myocardial perfusion during atrial pacing in patients with coronary artery disease. Circulation 53:807–819PubMedGoogle Scholar
  110. Schmidt D, Rod J, Ray G (1981) Effect of coronary angioplasty on regional myocardial perfusion. Circulation 64 :IV-161Google Scholar
  111. Selwyn AP, Fox K, Clay T (1979) The effect of acute regional myocardial ischemia on the angiographic anatomy of coronary arteries. Circulation 60:1335–1342PubMedGoogle Scholar
  112. Shaw DJ, Pitt A, Friesinger GC (1971) Autoradiographic study of the 133Xenon disappearance method for measurement of myocardial blood flow. Cardiovasc Res 6:276–286Google Scholar
  113. Sones FM, Shirey EK, Proudfit WL, Westcott RN (1959) Cine coronary angiography. Circulation 20:773Google Scholar
  114. Sonnenblick EH, Ross J, Covell JW, Kaiser GA, Braunwald E (1965) Velocity of contraction as a determinant of myocardial oxygen consumption. Am J Physiol 209:919–927PubMedGoogle Scholar
  115. Strauss HW, Pitt B (1976) Myocardial perfusion imaging in the evaluation of patients with coronary heart disease. In: Yu PN, Goodwin JF (eds) Progress in cardiology. Lea & Febiger, Philadelphia, pp 169–182Google Scholar
  116. Ter-Pogossian MM (1979) The assessment of myocardial integrity by positron emission computerized tomography. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 113–139Google Scholar
  117. Weiss ES, Siegel BA, Sobel BE, Welch MJ, Ter-Pogossian MM (1977) Evaluation of myocardial metabolism and perfusion with positron-emitting radionuclides. Prog Cardiovasc Dis 20:191–206PubMedCrossRefGoogle Scholar
  118. Weiss MB, Ellis K, Sciacca RR, Johnson LL, Schmidt DH, Cannon PJ (1976) Myocardial blood flow in congestive and hypertrophic cardiomyopathy: Relationship to peak wall stress and mean velocity of circumferential fiber shortening. Circulation 54:484PubMedGoogle Scholar
  119. Winbury MM (1975) Experimental studies on the mechanism of action of nitrates and beta-adrenergic blockers. In: Pharmacologie clinique des médicaments antiangineux; Symposium, Sandoz, Basel, pp 153–170Google Scholar
  120. Winbury MM, Howe BB, Weiss HR (1971) Effect of nitroglycerin and dipyridamole on epicardial and endocardial oxygen tension — further evidence for redistribution of myocardial blood flow. J Pharmacol Exp Ther 176:184PubMedGoogle Scholar
  121. Winkler B (1979) The tracer microsphere method. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 13–42Google Scholar
  122. Wolf R, Engel HJ, Hundeshagen H, Lichtlen P (1978) Collateral myocardial blood flow at rest and after maximal arteriolar dilatation in patients with ischemic heart disease. In: Kaltenbach M, Lichtlen P, Balcon R, Bussmann WD (eds) Coronary heart disease. Thieme, Stuttgart, pp 61–65Google Scholar
  123. Wolfson S, Gorlin R (1969) Cardiovascular pharmacology of propranolol in man. Circulation 40:501–511PubMedGoogle Scholar
  124. Wolfson W, Heinle RA, Hermann MV, Kemp HG, Sullivan JM, Gorlin R (1966) Propranolol and angina pectoris. Am J Cardiol 18:346–353CrossRefGoogle Scholar
  125. Wüsten B (1979) Biophysics of myocardial perfusion. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North Holland Biomedical Press, Amsterdam, p 199Google Scholar
  126. Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16:309–321PubMedGoogle Scholar
  127. Zierler KL (1972) Theory of measurement of myocardial blood flow in man by use of indicators and tracers, with consideration of assumptions and their violation in practical problems arising in special cases. In: Maseri A (ed) Myocardial blood flow in man: Methods and significance in coronary disease. Minerva Medica, Torino, pp 89–119Google Scholar

Literatur

  1. L’Abbate A, Biagini A, Michelassi C, Distante A, Maseri A (1977) Myocardial and blood kinetics of thallium-201 and potassium-42 in man at rest. Preliminary report. J Nucl Med Allied Sci 21:98–102PubMedGoogle Scholar
  2. L’Abbate A, Biagini A, Michelassi C, Maseri A (1979) Myocardial kinetics of thallium and potassium in man. Circulation 60:776–785PubMedGoogle Scholar
  3. Abele L, Lange C (1978) Konturfindungsalgorithmen und ihre Anwendung auf dem Gebiet der medizinischen Bilddatenverarbeitung. In: Triendl E (Hrsg) Bilddatenverarbeitung und Mustererkennung DAGM Symp. Oberpfaffenhofen. Springer, Berlin Heidelberg New York, S 327–333CrossRefGoogle Scholar
  4. Achenbach C, Hauswirth O, Heindrichs C, Ziskoven R, Köhler F, Smend J, Kowalewski S (1979) Toxizität und Teratogenität von Thallium. Dtsch Aerzteblatt 48:3189–3192Google Scholar
  5. Ahmad M, Merry SL, Haibach H (1981) Evidence of impaired myocardial perfusion and abnormal left ventricular function during exercise in patients with isolated systolic narrowing of the left anterior descending coronary artery. Am J Cardiol 48:832–836PubMedCrossRefGoogle Scholar
  6. Albro PC, Gould KL, Westcott RJ, Hamilton GW, Ritchie JL, Williams DL (1978) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. III. Clinical trial. Am J Cardiol 42:751–760PubMedCrossRefGoogle Scholar
  7. Alderson PO, Wagner Jr HN, Gomez-Moeiras JJ, Rehn TG, Becker LC, Douglas KH, Manspeaker HF, Schindledecker GR (1978) Simultaneous detection of myocardial perfusion and wall motion abnormalities by cinematic Tl-201 imaging. Radiology 127:531–533PubMedGoogle Scholar
  8. Aldor E, Blazek G, Gaul G, Heeger H, Kahn P (1978) Sensibilität des 201-Thalliumszintigramms des Herzens unter Belastungsbedingungen. Fortschr Roentgenstr 129:23–25CrossRefGoogle Scholar
  9. Alpert BS, Covitz W, Eubig C, Brown M (1981) False-positive thallium scan (to the editor), J Pediatr 99:333–334PubMedCrossRefGoogle Scholar
  10. Andreka B, Pretschner DP, Dopslaff H, Hundeshagen H (1982) Langfristige Änderung der Ejektionsfraktion nach Myokardinfarkt. In: Schmidt HAE, Rösier H (Hrsg) Nuklearmedizin, Computer assisted functional analysis. Schattauer, Stuttgart New York, S 451–453Google Scholar
  11. Areeda J, Van Train K, Garcia E, Maddahi J, Rosanski A, Waxman A, Beerman D (1982) Improved analysis of segmental thallium-201 myocardial scintigrams: quantitation of distribution, washout, and redistribution. In: Esser PD (ed) Digital imaging. Soc Nucl Med, New York, pp 257–262Google Scholar
  12. Atkins HL, Budinger TF, Lebowitz E, Ansari AN, Greene MW, Fairchild RG, Ellis KJ (1977) Thallium-201 for medical use part 3: Human distribution and physical imaging properties. J Nucl Med 18:133–140PubMedGoogle Scholar
  13. Bähre M, Neumann GP, Grouls V (1979) Myokardszintigraphie mit Tl-201 bei Angiosarkom des Herzens. Nuc Compact 10:86–88Google Scholar
  14. Bailey IK, Rouleau JR, Griffith LSC, Strauss HW, Pitt B (1977) Myocardial perfusion imaging to detect patients with single and multivessel disease. Herz 2:135Google Scholar
  15. Bailey IK, Griffith LSC, Rouleau J, Strauss HW, Pitt BB (1977a) Thallium-201 myocardial perfusion imaging at rest and during exercise. Circulation 55:79–87Google Scholar
  16. Bailey JK, Come PC, Kelly DT, Burow RD, Griffith LSC, Strauss HW, Pitt B (1977b) Thallium-201 myocardial perfusion imaging in aortic valve stenosis. Am J Cardiol 40:889–899CrossRefGoogle Scholar
  17. Bambynek B, Crasemann B, Fink RW (1972) X-ray fluorescence yields. Auger, and Coster-Kronig transition probabilities. Rev Mod Phys 44:716–813CrossRefGoogle Scholar
  18. Barber DC (1984) Displays in nuclear medicine. Nucl Med Comm 5:361–372CrossRefGoogle Scholar
  19. Barclay RK, Peacock W, Karnofsky DA (1953) Distribution and excretion of radioactive thallium in the chick embryo, rat, and man. J Pharmacol Exp Ther 107:178–187PubMedGoogle Scholar
  20. Barrera H, Gomez-Puyou (1975) Characteristics of the movement of K+ across the mitochondrial membrane and the inhibitory action of Tl +. J Biol Chem 250:5370–5374PubMedGoogle Scholar
  21. Basara BE, Wanner RJ, Hakki A, Iskandrian AS (1984) Extracardiac accumulation of thallium-201 in pulmonary carcinoma. Am J Cardiol 53:358–359PubMedCrossRefGoogle Scholar
  22. Bates BB, Rerych SK, Jones RH (1978) Exercise techniques for radionuclide angiocardiography. J Nucl Med Techn 6:199–201Google Scholar
  23. Beard OW, Hipp HR, Robins M (1960) Initial myocardial infarction among 503 veterans: five year survival. Am J Med 28:871–883PubMedCrossRefGoogle Scholar
  24. Becker LC, Bulkley BH, Pitt B, Flaherty JT, Weiss JL, Gerstenblith G, Rehn T, Pond M, Mason S, Silverman K, Wang DG, Weisfeldt ML (1978) Enhanced reduction of thallium-201 defects in acute myocardial infarction by nitroglycerin treatment: initial results of a prospective randomized trial. Clin Res 26:219A (abstr)Google Scholar
  25. Becker LC, Silverman KJ, Bulkley BH, Kallman CH, Mellits ED, Wisfeldt M (1983) Comparison of early thallium-201 scintigraphy and gated blood pool imaging for predicting mortality in patients with acute myocardial infarction. Circulation 67:1272–1282PubMedCrossRefGoogle Scholar
  26. Behar S, Schor S, Kariv I, Barell V, Modan B (1977) Evaluation of electrocardiogram in emergency room as a decision making tool. Chest 71:486–491PubMedCrossRefGoogle Scholar
  27. Beller GA, Watson DD, Pohost GM (1979) Kinetics of thallium distribution and redistribution: clinical applications in sequential myocardial imaging. In: Strauss HW, Pitt B (eds) Cardiovascular nuclear medicine, 2nd edn. Mosby, St Louis Toronto London, pp 225–242Google Scholar
  28. Beller GA, Holzgrefe HH, Watson DD (1983) Effects of dipyridamole-induced vasodilation of myocardial uptake and clearance kinetics of thallium-201. Circulation 68:1329–1338CrossRefGoogle Scholar
  29. Berger BC, Watson DD, Burwell LR, Crosby IK, Wellons HA, Teates CD, Beller GA (1979) Redistribution of thallium at rest in patients with stable and unstable angina and the effect of coronary artery bypass surgery. Circulation 60:1114–1125PubMedGoogle Scholar
  30. Berger BC, Watson DD, Taylor GJ (1980) Effects of coronary collaterals on regional myocardial perfusion assessed with quantitative thallium-201 scintigraphy. Am J Cardiol 46:365PubMedCrossRefGoogle Scholar
  31. Berger HJ, Gottschalk A, Zaret BL (1978) Dual radionuclide study of acute myocardial infarction: comparison of thallium-201 and technetium-99m stannous pyrophosphate imaging in man. Ann Intern Med 88:145–154PubMedGoogle Scholar
  32. Berger MJ (1971) Distribution of absorbed dose around point sources of electrons and beta-particles in water and other media. J Nucl Med [Suppl 5] MIRD Pamphlet 7:5–23Google Scholar
  33. Bergmann SR, Hack SN, Sobel BE (1982) ‘Redistribution’ of myocardial thallium-201 without reperfusion: implications regarding absolute quantification of perfusion. Am J Cardiol 49:1691–1698PubMedCrossRefGoogle Scholar
  34. Berman DS, Salel AF, Denado GL, Mason DT (1975) Noninvasive detection of regional myocardial ischemia using rubidium-81 and the scintillation camera: Comparison with stress electrocardiography in patients with arteriographically documented coronary stenosis. Circulation 52:619–626PubMedGoogle Scholar
  35. Berman DS, Gogren H, Miller RR, Maxwell KS (1977) Evaluation of the effects of graded coronary collaterals by rubidium-81 and thallium-201 regional myocardial scintigraphy at rest and after maximal exercise. Clin Res 25:87AGoogle Scholar
  36. Berman DS, Garcia EV, Maddahi J (1980) Role of thallium-201 imaging in the diagnosis of myocardial ischemia and infarction. In: Freeman LM, Weissmann HS (eds) Nuclear Medicine Annual 1980. Raven, New York, pp 1–55Google Scholar
  37. Berman M, Weiss MF (1978) SAAM manual. Washington DC, Dept of Health Education & Welfare, Publ(NIM):78–180Google Scholar
  38. Bertrand A, Karcher G, Amor M, Hocquard C, Georges F, Cherrier F (1982) Evaluation of percutaneous transluminal coronary angioplasty by radionuclide methods at basal state and at exercise. In: Raynaud C (ed) Nuclear medicine and biology I. Pergamon, Paris Oxford New York Sydney Frankfurt, pp 57–60Google Scholar
  39. Blood DK, McCarthy DM, Sciacca RR, Cannon PJ (1978) Comparison of single-dose and doubledose thallium-201 myocardial perfusion scintigraphy for the detection of coronary artery disease and prior myocardial infarction. Circulation 58:777–788PubMedGoogle Scholar
  40. Bodenheimer MB, Banka VS, Fooshee CM, Helfant RH (1979) Extent and severity of coronary heart disease. Determinations by thallous chloride thallium-201 myocardial perfusion scanning and comparison with stress electrocardiography. Arch Intern Med 139:630PubMedCrossRefGoogle Scholar
  41. Bonardi M (1980) Preparation of Tl-201 for medical use from Tl-203 enriched targets. Radiochem Radioanal Lett 42:35–44Google Scholar
  42. Bonardi M, Birattari C, Salomone A (1982) 201-Tl production studies by 203-T1 (p, 3n) and 202-Hg (p, 2n) nuclear reactions. J Label Comp Radiopharm 19:1340–1341Google Scholar
  43. Botvinick EH, Taradash MR, Shames DM, Parmley WW (1978) Thallium-201 myocardial perfusion scintigraphy for the clinical clarification of normal, abnormal and equivocal electrocardiographic stress test. Am J Cardiol 41:43PubMedCrossRefGoogle Scholar
  44. Botvinick EH, Dunn RF, Hattner RS, Massie BM (1980) A consideration of factors affecting the diagnostic accuracy of thallium-201 myocardial perfusion scintigraphy in detecting coronary artery disease. Semin Nucl Med 10:157–167PubMedCrossRefGoogle Scholar
  45. Botvinick EH, Perez-Gonzalez JF, Dunn R, Ports T, Chatterjee K, Parmley W (1983) Late prognostic value of scintigraphic parameters of acute myocardial infarction size in complicated myocardial infarction without heart failure. Am J Cardiol 51:1045–1051PubMedCrossRefGoogle Scholar
  46. Bradley-Moore PR, Lebowitz E, Greene MW, Atkins HL, Ansari AN (1975) Thallium-201 for medical use. II. Biologic behavior, J Nucl Med 16:156–160Google Scholar
  47. Brill AB, Erickson JJ (1978) Display systems in nuclear medicine. Semin Nucl Med VIII:155–161CrossRefGoogle Scholar
  48. Britten JS, Blank M (1968) Thallium activation of (Na+-K+)-activated ATPase of rabbit kidney. Biochim Biophys Acta 159:160–166PubMedGoogle Scholar
  49. Brookman V (1973) Spatial distortion in gamma camera images related to energy, window width, collimator and collimator orientation. J Nucl Med 14:383Google Scholar
  50. Brown K, Boucher CA, Okada RD, Newell J, Strauss HW, Pohost GM (1982) The prognostic value of serial exercise thallium-201 imaging in patients presenting for evaluation of chest pain: Comparison to contrast angiography, exercise, electrocardiography and clinical data. Am J Cardiol 49:967CrossRefGoogle Scholar
  51. Brown NJG, Clarke M, Davies I, Ellam S, Gibson C, Jarrit PH, Lawson R, Potter R, Stevens RG, Taylor D, Vernon P, Winston B (1984) Review. Which computer? Nucl Med Comm 5:291–316CrossRefGoogle Scholar
  52. Budinger TF, Rollo FD (1977) Physics and instrumentation. Progr Cardiovasc Res XX:19–53CrossRefGoogle Scholar
  53. Bühlmann A (1975) Probleme und Erfahrungen mit der Ergometrie in der klinischen Praxis. In: Mellerowicz H, Jokl E, Hansen G (Hrsg) Ergebnisse der Ergometrie. perimed, ErlangenGoogle Scholar
  54. Büll U, Niendorf HP, Strauer BE, Hast B (1976) Evaluation of myocardial function with the 201-thallium scintimetry in various diseases of the heart. Eur J Nucl Med 1:125–136PubMedCrossRefGoogle Scholar
  55. Büll U, Strauer BE, Hast B (1976a) Ergebnisse der 201-Thallium-Szintimetrie des Herzens bei der koronaren Herzkrankheit. Dtsch Med Wochenschr 101:1088CrossRefGoogle Scholar
  56. Büll U, Strauer BE, Witte J (1977) Segmental analysis of Tl-201 stress myocardial scintigraphy: the problem of using uniform normal values of Tl-201 myocardial uptake. J Nucl Med 18:1240–1241Google Scholar
  57. Büll U, Kleinhaus E, Seiderer M, Strauer BE (1979) Quantitative assessment of thallium-201 images. Cardiovasc Radiol 2:183–193CrossRefGoogle Scholar
  58. Büll U, Strauer BE (1980) Wertigkeit nuklearmedizinischer Verfahren in der Diagnostik des aktuten Myokardinfarktes. Internist 21:667–674PubMedGoogle Scholar
  59. Buja LM, Parkey RW, Stokely EM, Bonte FJ, Willerson JT (1976) Pathophysiology of technetium-99m stannous pyrophosphate and thallium-201 scintigraphy of acute anterior myocardial infarcts in dogs. J Clin Invest 57:1508PubMedCrossRefGoogle Scholar
  60. Buja LM (1979) Pathophysiology of myocardial scintigraphy. In: Parkey RW, Bonte FJ, Buja LM, Willerson JT (eds) Clinical nuclear cardiology. Appleton-Century-Crofts, New York, pp 255–287Google Scholar
  61. Bulkley BH, Rouleau J, Strauss HW, Pitt B (1975) Idiopathic hypertrophic subaortic stenosis: detection by thallium-201 myocardial perfusion imaging. N Engl J Med 293:1113PubMedCrossRefGoogle Scholar
  62. Bulkley BH, Rouleau J, Strauss HW, Pitt B (1975a) Detection of idiopathic hypertrophic subaortic stenosis with thallium-201. N Engl J Med 293:1113–1116CrossRefGoogle Scholar
  63. Bulkley BH, Rouleau J, Strauss HW, Pitt B (1976) Sarcoid heart disease: diagnosis by thallium-201 myocardial perfusion imaging. Am J Cardiol 37:125CrossRefGoogle Scholar
  64. Bulkley BH, Hutchins GM, Bailey I, Strauss HW, Pitt B (1977) Thallium-201 imaging and gated cardiac blood pool scans in patients with ischemic and idiopathic cardiomyopathy: a clinical and pathologic study. Circulation 55:753–760PubMedGoogle Scholar
  65. Bulkley BH, Rouleau JR, Whitaker JQ, Strauss HW, Pitt B (1977a) The use of thallium-201 for myocardial perfusion imaging in sarcoid heart disease. Chest 72:27–32CrossRefGoogle Scholar
  66. Bulkley BH, Silverman K, Weisfeldt ML, Burow R, Pond M, Becker LC (1979) Pathologic basis of thallium-201 scintigraphic defects in patients with fatal myocardial injury. Circulation 60:785–792PubMedGoogle Scholar
  67. Bulkley BH (1981) Non-coronary cardiomyopathy. In: Hör G, Felix R (Hrsg) Kardiovasculäre Nuklearmedizin, Schnetztor, Konstanz, S 111–116Google Scholar
  68. Burow GF, Pond M, Schafer AW, Becker L (1979) ‘Circumferential profiles’: a new method for computer analysis of thallium-201 myocardial perfusion images. J Nucl Med 20:771–777PubMedGoogle Scholar
  69. Caldwell JH, Hamilton GW, Sorenson SG, Ritchie JL, Williams DL, Kennedy JW (1980) The detection of coronary artery disease with radionuclide techniques: A comparison of rest-exercise thallium imaging and ejection fraction response. Circulation 61:610PubMedGoogle Scholar
  70. Carillo AP, Marks DS, Pickard SD, Khaja F, Goldstein S (1978) Correlation of exercise 201-thallium myocardial scan with coronary arteriograms and the maximal exercise test. Chest 73:321CrossRefGoogle Scholar
  71. Carr EA Jr, Beierwaltes WH, Patno ME (1962) The detection of experimental myocardial infarcts by photoscanning. Am Heart J 64:650PubMedCrossRefGoogle Scholar
  72. Carr EA Jr, Gleason F, Shaw J, Krontz B (1964) The direct diagnosis of myocardial infarction by photoscanning after administration of cesium-131. Am Heart J 68:627–636CrossRefGoogle Scholar
  73. CEA Sorin (1984) T1-201-S-1, Instructions for use Chang W, Henkin RE, Hale DJ, Hall D (1980) Methods for detection of left ventricular edges. Semin Nucl Med 10:39–53Google Scholar
  74. Chapman D, Newcomer K, Berman D (1979) Halfinch vs. quarter-inch Anger camera technology: resolution and sensitivity differences at low photopeak energies. J Nucl Med 20:610–611Google Scholar
  75. Chapman DR, Brachman MB, Tanasescu DE, Wolfstein RS, Berman DS, Waxman AD (1980) Clinical and parametric evaluation of three large-field-of-view cameras. J Nucl Med 21:161–164PubMedGoogle Scholar
  76. Chlup J, Engel HJ, Pretschner P, Lichtlen PR (1981) Das 201-Thallium-Belastungsszintigramm bei Koronarpatienten nach Verabreichung des kardioselektiven Betablockers Atenolol. Z Kardiol 70:450–454PubMedGoogle Scholar
  77. Cinotti L, Meignan M, Usdin JP, Vasile N, Castaigne A (1983) Diagnostic value of image processing in myocardial scintigraphy. J Nucl Med 24:768–774PubMedGoogle Scholar
  78. Clark KC (1973) Positioning in radiography, vol 1, 9th edn. William Heinemann Medical Books Ltd, LondonGoogle Scholar
  79. Cloutier RJ, Watson EE, Rohrer RH (1973) Calculating the radiation dose to an organ. J Nucl Med 14:53–55PubMedGoogle Scholar
  80. Coffey JL, Cristy M, Warner GG (1981) Specific absorbed fractions for photon sources uniformly distributed in the heart chambers and heart wall of a heterogeneous phantom. MIRD Pamphlet, no 13. J Nucl Med 22:65–71PubMedGoogle Scholar
  81. Cohen HA, Baird MG, Rouleau JR, Fuhrmann CF, Bailey IK, Summer WR, Strauss HW, Pitt B (1976) Thallium 201 myocardial imaging in patients with pulmonary hypertension. Circulation 54:790–795PubMedGoogle Scholar
  82. Cohn JN, Guihe NH, Broder MI, Limas CJ (1974) Right ventricular infarction: clinical and hemodynamic features. Am J Cardiol 33:209–214PubMedCrossRefGoogle Scholar
  83. Cooper R, Puri S, Francis ChK, Spencer RP (1980) Role of coronary artery disease and collateral circulation in redistribution of thallium-201. Clin Nucl Med 5:292–298PubMedCrossRefGoogle Scholar
  84. Corne RA, Gotsman MS, Weiss A, Enlander D, Samuels LD, Salomon JA, Warshaw B, Atlan H (1979) Thallium-201 scintigraphy in diagnosis of coronary stenosis. Comparison with electrocardiography and coronary arteriography. Br Heart J 41:575–583PubMedCrossRefGoogle Scholar
  85. Costin JC, Zaret BL (1976) Effects of propranolol and digitalis upon radioactive thallium and potassium uptake in myocardial and skeletal muscle. J Nucl Med 17:535Google Scholar
  86. Cowley MJ, Coghlan HC, Logic JR (1977) Visualization of atrial myocardium with thallium-201: case report. J Nucl Med 18:984–986PubMedGoogle Scholar
  87. Crone-Münzebrock W, Küpper W, Montz R, Darup J, Bleifeld W (1982) Vergleichende Untersuchung der Myokardszintigraphie, des myokardialen Laktatstoffwechsels und der Koronarsinusflussmessungen vor und nach aortakoronarem Bypass. Z Kardiol 71:87–92PubMedGoogle Scholar
  88. Currie PJ, Kelly MJ, Pitt A (1983) Comparison of supine and erect bicycle exercise electrocardiography in coronary heart disease: accentuation of exercise-induced ischemic ST depression by supine posture. Am J Cardiol 52:1167–1173PubMedCrossRefGoogle Scholar
  89. Dash H, Massie BM, Botvinick EH, Brundage BH (1979) The noninvasive identification of left main and three-vessel coronary artery disease by myocardial stress perfusion scintigraphy and treadmill exercise electrocardiography. Circulation 60:276–284PubMedGoogle Scholar
  90. Datz FL, Lewis SE, Parkey RW, Bonte FJ, Buja LM, Willerson JT (1980) Radionuclide evaluation of cardiac trauma. Semin Nucl Med X:187–192CrossRefGoogle Scholar
  91. Deconinck F, Luypaert R (1982) Design and evaluation of median filters for scintigraphic image filtering. Proc iSMiii, IEEE, Los Angeles 20–23Google Scholar
  92. Diamond GA (1979) CADENZA: computer-assisted diagnosis and evaluation of coronary artery disease. Cardiokinetics, Seattle, Washington (software and documentation magnetic tape)Google Scholar
  93. Diamond GA, Forrester JS (1979) Analysis of probability as an aid to the clinical diagnosis of coronary artery disease. N Engl J Med 300:1350–1358PubMedCrossRefGoogle Scholar
  94. Diamond GA, Forrester JS, Hirsch M, Staniloff HM, Vas R, Berman DS, Swan HJC (1980) Application of conditional probability analysis to the clinical diagnosis of coronary artery disease. J Clin Invest 65:1210–1221PubMedCrossRefGoogle Scholar
  95. DiCola VC, Downing SE, Donabedian RK, Zaret BL (1977) Pathophysiological correlates of thallium-201 myocardial uptake in experimental infarction. Cardiovasc Res 11:141–146PubMedCrossRefGoogle Scholar
  96. Doherty PW, McLaughlin PR, Billingham M, Kernoff R, Goris ML, Harrison DC (1979) Cardiac damage produced by directed current countershock applied to the heart. Am J Cardiol 43:225–232PubMedCrossRefGoogle Scholar
  97. Donaldson RF, Isner JM (1984) Intercoronary continuity : an anatomic basis for bidirectional coronary blood flow distinct from coronary collaterals. Am J Cardiol 53:351–352PubMedCrossRefGoogle Scholar
  98. Dunn RF, Freedman B, Bailey IK, Uren RF, Kelly DT (1980) Exercise thallium-201 imaging: location of perfusion abnormalities in single vessel coronary disease. J Nucl Med 21:717–722PubMedGoogle Scholar
  99. Dunn RF, Wolff L, Wagner S, Botvinick EM (1981) The inconsistent pattern of thallium defects: a clue to the false positive perfusion scintigram. Am J Cardiol 48:224–232PubMedCrossRefGoogle Scholar
  100. Dunn RF, Uren RF, Sadick N, Bautovich G, McLaughlin A, Hiroc M, Kelly DT (1982) Comparison of thallium-201 scanning in idiopathic dilated cardiomyopathy and severe coronary artery disease. Circulation 66:804–810PubMedCrossRefGoogle Scholar
  101. Eichstädt H, Gauss A, Andrasch R, Feine U, Kochsiek K (1979) Noninvasive perfusion control by thallium-201 myocardial scintigraphy after coronary artery bypass surgery. Cardiovasc Radiol 2:243PubMedCrossRefGoogle Scholar
  102. Empfehlung zur Durchführung einer einfachen Routinekontrolle von Gamma-Kameras (Anger-Typ) (1981) Nuklearmedizin-Informationen 4:15. Deutsche Gesellschaft für Nuklearmedizin eV, Medizinische Hochschule HannoverGoogle Scholar
  103. Engel HJ, Wolf R, Pretschner P, Hundeshagen H, Lichtlen PR (1981) Effects of nitrates on myocardial blood flow during angina: comparison of results obtained by inert gas clearance and 201-thallium imaging. In: Lichtlen PR, Engel HJ, Schrey A, Swan HJC (eds) Nitrates III. Cardiovascular effects, Springer, Berlin Heidelberg New York, pp 184–191Google Scholar
  104. Epstein SE (1980) Implication of probability analysis on the strategy used for noninvasive detection of coronary artery disease. Role of single or combined use of exercise electrocardiographic testing, radionuclide cineangiography and myocardial perfusion imaging. Am J Cardiol 46:491–499PubMedCrossRefGoogle Scholar
  105. Erickson JJ, Rollo FD (1983) Digital nuclear medicine. Lippincott, Philadelphia TorontoGoogle Scholar
  106. Esser PD, Westerman BR, Sorenson JA (eds) (1983) Emission computed tomography: Current trends. Soc Nucl Med, New YorkGoogle Scholar
  107. Faris JV, Burt RW, Graham MC, Knoebel SB (1982) Thallium-201 myocardial scintigraphy: improved sensitivity, specificity and predictive accuracy by application of a statistical image analysis algorithm. Am J Cardiol 49:733–742PubMedCrossRefGoogle Scholar
  108. Feldmann RL, Nichols WW, Pepine CJ, Conti CR (1978) Hemodynamic significance of the lenght of a coronary arterial narrowing. Am J Cardiol 41:865–871CrossRefGoogle Scholar
  109. Felix R, Wagner J, Pensky W, Thurn P, Neumann G, Hünermann B, Schaede A, Simon H, Winkler C (1975) Die Myokardszintigraphie mit Thallium-201 als nicht-invasive Methode. Dtsch Med Wochenschr 100:2373PubMedCrossRefGoogle Scholar
  110. Feller PA, Sodd VJ (1975) Dosimetry of four heartimaging redionuclides: 43K, 81Rb, 129Cs, and 2O1T1. J Nucl Med 16:1070–1075PubMedGoogle Scholar
  111. Feller PA, Scholz KL (1976) Nuclide parameters and S factors for Tl-201 dosimetry estimates. Med Phys 3:422–425PubMedCrossRefGoogle Scholar
  112. Finley JP, Howman-Giles R, Gilday DL, Olley PM, Rowe RD (1978) Thallium-201 myocardial imaging in anomalous left coronary artery arising from the pulmonary artery. Applications before and after medical and surgical treatment. Am J Cardiol 42:675–680PubMedCrossRefGoogle Scholar
  113. Finley JP, Howman-Giles RB, Gilday DL, Bloom KR, Rowe RD (1979) Transient myocardial ischemia of the newborn infant demonstrated by thallium myocardial imaging. J Pediatr 94:263–270PubMedCrossRefGoogle Scholar
  114. Finley JP (1981) False-positive thallium scan (reply to the editor). J Pediatr 99:334Google Scholar
  115. Fletcher JW, Walter KE, Witztum KF, Daly JL, Herbig FK, Mueller HS, Donati RM (1978) Diagnosis of coronary artery disease with 201-Tl: Computer analysis of myocardial perfusion images. Radiology 128:423–427PubMedGoogle Scholar
  116. Forth W, Henning CH (1979) Thallium-Vergiftungen und ihre Behandlung. Dtsch Aerzteblatt 43:2803–2807Google Scholar
  117. Francisco DA, Collins SM, Go RT, Ehrhardt JC, Kirk OO van, Marcus ML (1982) Tomographic thallium-201 myocardial perfusion scintigrams after maximal coronary artery vasodilation with intravenous dipyridamole. Comparison of qualitative and quantitative approaches. Circulation 66:370:379PubMedCrossRefGoogle Scholar
  118. Friedman TD, Greene AC, Iskandrian AS, Hakki A, Kane SA, Segal BL (1982) Exercise thallium-201 myocardial scintigraphy in women: correlation with coronary arteriography. Am J Cardiol 49:1632–1637PubMedCrossRefGoogle Scholar
  119. Froelich JW, Thrall JH, Kalff V, Rogers WL, Rabinovitch M (1983) Computer analysis of cardiac radionuclide data. Prog Cardiovasc Dis 26:43–74PubMedCrossRefGoogle Scholar
  120. Gaffney FA, Wohl AJ, Blomqvist CG, Parkey RW, Willerson JT (1978) Thallium-201 myocardial perfusion studies in patients with the mitral valve prolapse syndrome. Am J Med 64:21–26PubMedCrossRefGoogle Scholar
  121. Garcia E, Maddahi J, Berman D, Waxman A (1981) Space/time quantitation of thallium-201 myocardial scintigraphy. J Nucl Med 22:309–317PubMedGoogle Scholar
  122. Garcia E, Maddahi J, Berman D, Waxman A, Forrester J, Swan HJC (1981a) Superiority of a new computerized method for space-time analysis of thallium-201 myocardial scintigrams. Proc Computers in Cardiology, IEEE 301–304Google Scholar
  123. Gaulden ME (1983) ‘Biological Dosimetry’ of radionuclids and hazards. J Nucl Med 24:160–164PubMedGoogle Scholar
  124. Gehring PJ, Hammond PB (1967) The interrelationship between thallium and potassium in animals. J Pharmacol Exp Ther 155:187–201PubMedGoogle Scholar
  125. Gelbart A, Doherty PW, McLaughlin PR (1976) Na+, Ka+-ATPase and coronary blood flow as determinants of thallium-201 uptake by ischemic myocardium. Circulation 54:11–70 (abstr)Google Scholar
  126. Gewirtz H, Beller GA, Strauss HW, Dinsmore RE, Zir LM, McKusick KA, Pohost GM (1979) Transient defects of resting thallium scans in patients with coronary artery disease. Circulation 59:707–713PubMedGoogle Scholar
  127. Gewirtz H, Grötte GJ, Strauss HW, O’Keefe DD, Akins CW, Daggett WM, Pohost GM (1979a) The influence of left ventricular volume and wall motion on myocardial images. Circulation 59:1172–1177Google Scholar
  128. Gibson RS, Taylor GJ, Watson DD, Strebbing PT, Martin RP, Crampton RS, Beller GA (1981) Predicting the extent and location of coronary artery disease during the early post-infartion period by quantitative thallium-201 scintigraphy. Am J Cardiol 47:1010PubMedCrossRefGoogle Scholar
  129. Gibson RS, Watson DD, Carabello BA, Holt ND, Beller GA (1982) Clinical implications of increased lung uptake of thallium-201 during exercise scintigraphy 2 weeks after myocardial infarction. Am J Cardiol 49:1586–1593PubMedCrossRefGoogle Scholar
  130. Gibson RS, Watson DD, Craddock GB, Crampton RS, Kaiser DL, Denny MJ, Beller GA (1983) Prediction of cardiac events after uncomplicated myocardial infarction: a prospective study comparing predischarge exercise thallium-201 scintigraphy and coronary angiography. Circulation 68:321–336PubMedCrossRefGoogle Scholar
  131. Gibson RS, Watson DD, Taylor GT, Crosby IK, Wellons HL, Holt ND, Beller GA (1983a) Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1:804CrossRefGoogle Scholar
  132. Gilday DL, Ash JM (1980) Nuclear Medicine: application of radionuclides to congenital heart disease. In: Righetti A, Donath A (eds) Prog. Nucl Med, vol 6. Cardiovascular Nuclear Medicine, Karger, Basel München Paris London New York Sydney, pp 169–182Google Scholar
  133. Gilday DL (1981) Static myocardial scintigraphy in pediatrics. In: Hör G, Felix R (Hrsg) Kardiovaskuläre Nuklearmedizin, Schnetztor, Konstanz, pp 141–150Google Scholar
  134. Gilday DL, DeSouza ME, Schultz ES, Tinkle J (1983) Evaluation of two pediatric cardiac converging collimators. Radiology 146:240–241PubMedGoogle Scholar
  135. Gile JD, Garrison WM, Hamilton JG (1952) Carrier free radioisotopes from cyclotron target. XXI: Preparation and isolation of Tl-200, Tl-201, Tl-202 from mercury. J Chem Phys 20:523CrossRefGoogle Scholar
  136. Glinz B (1984) Zur klinischen Bedeutung der Thallium-201-Myokardszintigraphie. Dissertation, Med Hochschule Hannover.Google Scholar
  137. Goetz L, Sabbioni E, Marafante E, Edel-Rade J, Birattari C, Bonardi M (1981) Biochemical studies of current environmental levels of trace elements: cyclotron production of radiothallium and its use for metabolic investigations on laboratory animals. J Radioanal Chem 67:183–192CrossRefGoogle Scholar
  138. Goldhaber SZ, Newell JB, Alpert NM, Andrews E, Pohost GM, Ingwall JS (1983) Effects of ischemic-like insult on myocardial thallium-201 accumulation. Circulation 67:778–786PubMedCrossRefGoogle Scholar
  139. Goldman MR, Boucher CA (1980) Value of radionuclide imaging techniques in assessing cardiomyopathy. Am J Cardiol 46:1232PubMedCrossRefGoogle Scholar
  140. Goldstein RA, Mullani NA, Marani SK, Fischer DJ, Gould KL, O’Brien HA Jr (1983) Myocardial perfusion with Rubidium-82. II. Effects of metabolic and pharmocologic interventions. J Nucl Med 24:907–915PubMedGoogle Scholar
  141. Gordon DG, Pfisterer M, Williams SR, Walaski S, Ashburn W (1979) The effect of diaphragmetric attenuation on Tl-201 images. Clin Nucl Med 4:150PubMedCrossRefGoogle Scholar
  142. Goretzki G (1981) Mehrjährige Routineerfahrung mit einem umfassenden nuklearmedizinischen Informationssystem. In: Pöppl SJ, Pretschner DP (Hrsg) Systeme und Signalverarbeitung in der Nuklearmedizin. Springer, Berlin Heidelberg New York, S 15–28CrossRefGoogle Scholar
  143. Goris ML, Daspit SG, McLaughlin P (1976) Interpolative background substraction. J Nucl Med 17:744–747PubMedGoogle Scholar
  144. Goris ML, Briandet PA (1983) A clinical and mathematical introduction to computer programming of scintigraphic images. Raven, New YorkGoogle Scholar
  145. Gould KL, Westcott RJ, Albro PC, Hamilton GCW (1978) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. II. Clinical methodology and feasibility. Am J Cardiol 41:279–287PubMedCrossRefGoogle Scholar
  146. Gould KL (1978a) Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. I. Physiologic basis and experimental validation. Am J Cardiol 42:267–278CrossRefGoogle Scholar
  147. Graham LS, Poe ND, Mac Donald NS (1976) Collimation for imaging the myocardium. J Nucl Med 17:401–403PubMedGoogle Scholar
  148. Graham LS, Poe ND, Robinson GD Jr (1976a) Collimation for imaging the myocardium. II. J Nucl Med 17:719–723Google Scholar
  149. Greenberg BM, Hart R, Botvinick EH, Werner JA, Brundage BH, Shames DM, Chatterjee K, Parmley WW (1978) Thallium-201 myocardial perfusion scintigraphy to evaluate patients after coronary bypass surgery. Am J Cardiol 42:167PubMedCrossRefGoogle Scholar
  150. Greenberg PS, Ellestad MH, Clover RC (1984) Comparison of the multivariate analysis and CADENZA systems for determination of the probability of coronary artery disease. Am J Cardiol 53:493–496PubMedCrossRefGoogle Scholar
  151. Greenspan M, Iskandrian AS, Catherwood (1980) Myocardial bridging of the left anterior descending artery: Evaluation using exercise thallium-201 myocardial scintigraphy. Cathet Cardiovasc Diagn 6:173PubMedCrossRefGoogle Scholar
  152. Greenspan MA, Iskandrian AS, Mintz GS, Croll MN, Segal BL, Kimbris D, Bemis CA (1980a) Exercise myocardial scintigraphy with 201-thallium. Use in patients with mitral valve prolaps without associated coronary artery disease. Chest 77:47CrossRefGoogle Scholar
  153. Groch MW, Lewis GK (1976) Thallium-201: scintillation camera imaging considerations. J Nucl Med 17:142–145PubMedGoogle Scholar
  154. Grüntzig AR (1976) Perkutane Dilatation von Koronarstenosen — Beschreibung eines neuen Kathetersystems. Klin Wochenschr 54:543PubMedCrossRefGoogle Scholar
  155. Grüntzig AR (1978) Transluminal dilatation of coronary artery stenosis. Lancet 1:263PubMedCrossRefGoogle Scholar
  156. Gutgesell HP, Pinsky WW, DePuey EG (1980) Thallium-201 myocardial perfusion imaging in infants and children. Value in distinguishing anomalous left coronary artery from congestive cardiomyopathy. Circulation 61:596–599PubMedGoogle Scholar
  157. Haft JI, Platt RN, Wilson JL, Sturmann MF (1979) The value of thallium imaging in early diagnosis of acute myocardial infarction. Clin Res 27:563A (abstr)Google Scholar
  158. Hamilton G, Trobaugh G, Ritchie J, Williams D (1977) An analysis of the clinical usefulness of thallium-201 for detection of coronary disease based on Bayes theorem. Circulation [Suppl] 56:111 (abstr)Google Scholar
  159. Hamilton GW, Narahara KA, Yee H, Ritchie JL, Williams DL, Gould KL (1978) Myocardial imaging with thallium-201: effect of cardiac drugs on myocardial images and absolute tissue distribution. J Nucl Med 19:10–16PubMedGoogle Scholar
  160. Hamilton GW, Narahara KA, Trobaugh GB, Ritchie JL, Williams DL (1978a) Thallium-201 myocardial imaging: characterization of the ECG-synchronized images. J Nucl Med 19:1103–1110Google Scholar
  161. Hamilton GW, Ritchie JL, Coleman A, Robertson M (1978b) Myocardial Imaging: equipment and techniques. In: Ritchie JL, Hamilton GW, Wackers FJTh (eds) Thallium-201 myocardial imaging. Raven, New York, pp 29–39Google Scholar
  162. Hamilton GW, Trobaugh GB, Ritchie JL, Gould KL, DeRouen TA, Williams DL (1978c) Myocardial imaging with thallium-201: an analysis of clinical usefulness based on Bayes’ theorem. Semin Nucl Med VIII:358–364CrossRefGoogle Scholar
  163. Hamilton GW (1979) Myocardial imaging with Thallium-201 : the controversy over its clinical usefulness in ischemic heart disease. J Nucl Med 20:1201–1205PubMedGoogle Scholar
  164. Hearse DJ, Yellon DM (1981) The ‘border zone’ in evolving myocardial infarction: controversy or confusion? Am J Cardiol 47:1321–1334PubMedCrossRefGoogle Scholar
  165. Hendee WR (1983) Particulate radiations emitted during electron capture and isometric transitions. J Nucl Med 24:1192–1193PubMedGoogle Scholar
  166. Henkels U, Blümchen G, Ebner F (1977) Zur Problematik von Belastungsprüfungen zur Abhängigkeit von der Tageszeit bei Patienten mit Koronarinsuffizienz. Herz/Kreisl 9:343Google Scholar
  167. Henning H, Schelbert HR, Righetti A, Ashburn WL, O’Rourke RA (1977) Dual myocardial imaging with technetium-99m pyrophosphate and thallium-201 for detecting, localizing and sizing acute myocardial infarction. Am J Cardiol 40:147–155PubMedCrossRefGoogle Scholar
  168. Hirzel GO, Grüntzig AR, Nüsch K, Krayenbühl HP, Horst W (1978) Thallium-201 imaging for the evaluation of myocardial perfusion after percutaneous transluminal angioplasty of coronary artery stenosis. Circulation 58:180 (abstr)Google Scholar
  169. Hirzel HO, Nuesch K, Krayenbühl HP, Sialer G, Horst W (1979) Thallium-201-My okardszintigraphie. Aussagekraft und Stellenwert in der Diagnostik der koronaren Herzkrankheit. Schweiz Med Wochenschr 109:1641Google Scholar
  170. Hirzel HO, Nuesch K, Gruentzig AR, Luetolf UM (1981) Short- and long-term changes in myocardial perfusion after percutaneous transluminal coronary angioplasty assessed by thallium-201 exercise scintigraphy. Circulation 63:1001PubMedCrossRefGoogle Scholar
  171. Hlatky M, Botvinick E, Brundage B (1982) Diagnostic accurary of cardiologists compared with probability calculations using Bayes’ rule. Am J Cardiol 49:1927–1931PubMedCrossRefGoogle Scholar
  172. Hör G (1982b) Myokard- und Ventrikelszintigraphie (Radionuklid-Ventrikulographie) bei koronarer Herzkrankheit. Therapiewoche 32:6256–6276Google Scholar
  173. Hör G (1982c) Clinical efficacy of thallium-201 myocardial scintigraphy: an overview of seven years of experience. In: Diethrich EB (ed) Noninvasive assessment of the cardiovascular system, John Wright PSG, Boston, pp 253–259Google Scholar
  174. Hör G, Lichte H, Pabst HW, Luther M (1974) Tl-201 Myokardszintigraphie bei Herzinfarkt. Nuc Compact 5:77Google Scholar
  175. Hör G, Kriegel H, Pabst HW, Dressler J (1979) 201-Tl-Myokardszintigraphie (I.: Biokinetik, exogen-pharmakologische Parameter, Technik). Nuklearmedizin [Suppl] 2:3–11Google Scholar
  176. Hör G, Sebening H, Sauer E, Dressler J, Lutilsky L, Wagner-Manslau C, Bofilias I, Wolf I, Pabst HW (1979a) Tl-201-redistribution analysis in early and delayed myocardial scintigrams of patients with coronary heart disease (CHD). Eur J Nucl Med 4:343–350CrossRefGoogle Scholar
  177. Hör G, Kanemoto N, Standke R, Maul FD, Klepzig H Jr, Kober G, Kaltenbach M (1980) Transluminale Angioplastik: Erfolgskontrolle durch Verfahren der Nuklearmedizin nach nicht-operativer Dilatation kritischer Koronararterienstenosen. Herz 5:168–176PubMedGoogle Scholar
  178. Hör G, Kanemoto N (1981) 201-Tl-myocardial scintigraphy: current status in coronary artery disease, results of sensitivity/specificity in 3092 patients and clinical recommendations. Nucl Med XX:136–147Google Scholar
  179. Hör G, Maul FD (1982) Myokardszintigraphie. Nuklearmedizin 5:229–249Google Scholar
  180. Hör G, Kaltenbach M, Maul FD, Standke R, Kober G, Scherer M, Klepzig M, Kanemoto N, Munz D (1982a) Sectorial exercise myocardial scintigraphy and equilibrium-radionuclide-ventriculography: after transluminal coronary angioplasty (TCA) of critical LAD-stenoses. In: Raynaud C (ed) Nuclear medicine and biology I. Pergamon, Paris Oxford New York Toronto Sydney Frankfurt, pp 54–56Google Scholar
  181. Hoffer PB, Neumann R, Quartararo L, Lange R, Hernandez T (1984) Improved intrinsic resolution: does it make a difference? Concise communication. J Nucl Med 25:230–236PubMedGoogle Scholar
  182. Hollemann AF, Wiberg E (1956) Lehrbuch der anorganischen Chemie, 37.–39. Aufl. de Gruyter, BerlinGoogle Scholar
  183. Holman BL, Parker JA (1981) Computer-assisted cardiac nuclear medicine. Little, Brown and Company, BostonGoogle Scholar
  184. Huckell VF, Staniloff HM, Feiglin DM, Mackenzie GW, Wald RW, Wigle ED, Morch JE, McLaughlin PR (1978) The demonstration of segmental perfusion defects in hypertrophic cardiomyopathy imitating coronary artery disease. Am J Cardiol 41:438CrossRefGoogle Scholar
  185. ICRU-Report 32 (1979) Methods of assessment of absorbed dose in clinical use of radionuclides. Int Comm on Radiation Units and Measurements, Washington DCGoogle Scholar
  186. IEC (1979) Characteristics and test conditions of radionuclide imaging devices, 62 C Rev. March 1979 (Paris), Techn Committee No 62, Sub-Committee 62C. High-energy radiation equipment and equipment for Nucl Med, Int Electrotechnical Comm, 1, Rue de Verembe, GenevaGoogle Scholar
  187. Iskandrian AS, Mintz GS, Croll MN, Wallner CR, Bemis CE, Kimbiris D, Segel BL (1980) Exercise thallium-201 myocardial scintigraphy: Advantages and limitations. Cardiology 65:136PubMedCrossRefGoogle Scholar
  188. Iskandrian AS, Segal BI, Haaz W, Kane S (1980a) Effects of coronary artery narrowing, collaterals and left ventricular function on the pattern of myocardial perfusion. Cathet Cardiovasc Diagn 6:159CrossRefGoogle Scholar
  189. Isner JM, Roberts WC (1978) Right ventricular infarction complicating left ventricular infarction secondary to coronary heart disease: frequency, location, associated findings and significance from analysis of 236 necropsy patients with acute or healed myocardial infarction. Am J Cardiol 42:885–894PubMedCrossRefGoogle Scholar
  190. Jehle J, Benesch L, Neuhaus KL, Rönsberg D, Spiller P, Wolter C, Loogen F, Bircks W (1979) Klinische, angiographische und hämodynamische Befunde vor und nach koronarer Revaskularisation. Z Kardiol 68:839PubMedGoogle Scholar
  191. Johnstone DE, Wackers FJTh, Berger HJ, Hoffer PB, Kelley MJ, Gottschalk A, Zaret BL (1979) Effects of patient positioning on left lateral thallium-201 myocardial images. J Nucl Med 20:183–188Google Scholar
  192. Johnstone DE, Sands MJ, Berger HJ, Reduto LA, Lachman AS, Wackers FJTh, Cohen LS, Gottschalk A, Zaret BL, Pytlik L (1980) Comparison of exercise radionuclide angiography and thallium-201 myocardial perfusion imaging in coronary artery disease. Am J Cardiol 45:1113PubMedCrossRefGoogle Scholar
  193. Jordan LJ, Borer JS, Zullo M, Hayes D, Kubo S, Moses JW, Carter J (1983) Exercise versus cold temperature stimulation during radionuclide cineangiography: diagnostic accuracy in coronary heart disease. Am J Cardiol 51:1091–1097PubMedCrossRefGoogle Scholar
  194. Josephson MA, Brown BG, Hecht HS, Hopkins J, Pierce CD, Petersen RB (1980) Detection and localization of 40% coronary stenosis in patients: comparison of exercise and dipyridamole thallium-201 myocardial imaging. Am J Cardiol 45:399CrossRefGoogle Scholar
  195. Just H, Bahadoori E, Kersting F, Meinertz Th (1978) Allgemeine Symptomatologie und Untersuchungsverfahren bei Kardiomyopathie. Therapiewoche 28:9941–9948Google Scholar
  196. Kaltenbach M, Kober G, Satter P, Krause E (1979) Koronarchirurgie versus Ballondilatation. Z Kardiol 68:692Google Scholar
  197. Kaltenbach M, Samek L (1980) Belastungs-EKG. In: Kaltenbach M, Roskamm H (Hrsg) Vom Belastungs-EKG zur Koronarangiographie. Springer, Berlin Heidelberg New York, S 37–83CrossRefGoogle Scholar
  198. Kaltenbach M, Kober G, Scherer D, Klepzig H, Hör G, Kanemoto N, Maul FD, Satter P (1981) Ergebnisse der transluminalen Koronarangioplastik. In: Breddin K (ed) Thrombose und Atherogenese. Pathophysiologie und Therapie der arteriellen Verschlusskrankheit, Witzstrock, Baden-Baden, Köln New York, S 173–179Google Scholar
  199. Kannel WB, Sorlie P, McNamara PM (1979) Prognosis after initial infarction: the Framingham Study. Am J Cardiol 44:53–59PubMedCrossRefGoogle Scholar
  200. Karlsberg RP, Gelezunas VL, Lyons KP (1982) Highly localized in vivo measurement of myocardial perfusion with avalanche radiation detectors. Circulation 65:54–61PubMedCrossRefGoogle Scholar
  201. Kassis AI, Adelstein SJ, Haydock C, Sastry KSR (1982) Lethality of Auger electrons from the decay of bromine-77 in the DNA of mammalian cells. Radiat Res 90:362–373PubMedCrossRefGoogle Scholar
  202. Kassis AI, Adelstein SJ, Haydock C, Sastry KSR (1983) Thallium-201: an experimental and a theoretical radiobiological approach to dosimetry. J Nucl Med 24:1164–1175PubMedGoogle Scholar
  203. Kawana M, Krizek H, Porter J, Lathrop KA, Charleston D, Harper PV (1970) Use of 199-T1 as a potassium analog in scanning. J Nucl Med 11:333 (abstr)Google Scholar
  204. King DW, Gollnick PD (1970) Ultrastructure of rat heart and liver after exhaustive exercise. Am J Physiol 218:1150–1155PubMedGoogle Scholar
  205. Khaja F, Alam M, Goldstein S, Anbe DT, Marks DS (1979) Diagnostic value of visualization of the right ventricle using thallium-201 myocardial imaging. Circulation 59:182–188PubMedGoogle Scholar
  206. Klein GJ, Kostuk WJ, Boughner DR, Chamberlain MJ (1978) Stress myocardial imaging in mitral leaflet prolapse syndrome. Am J Cardiol 42:746PubMedCrossRefGoogle Scholar
  207. Klepzig H Jr, Scherer D, Kober G, Maul FD, Kanemoto N, Standke R, Hör G, Kaltenbach M (1982) Nuklearmedizinische Erfolgskontrollen nach transluminaler koronarer Angioplastik (TCA). Therapiewoche 32:6498–6504Google Scholar
  208. Knoop B, Pretschner P, Dopslaff H, Jordan K (1980) Zur Anpassung des Bildrasters an die Übertragungsfunktion der Gamma-Kamera bei der kardialen Funktionsszintigraphie. In: Schmidt HAE, Riccabona G (Hrsg) Nuklearmedizin. Die klinische Relevanz der Nuklearmedizin. Schattauer, Stuttgart New York, S 56–59Google Scholar
  209. Knopp R, Winkler C (1976) Ein universell anwendbares neues DV-System für die klinische Nuklearmedizin. Med Tech 96:102–107Google Scholar
  210. Kober G (1980) Kononarangiographie. In: Kaltenbach M, Roskamm H (Hrsg) Vom Belastungs-EKG zur Koronarangiographie. Springer, Berlin Heidelberg New York, S 110–169CrossRefGoogle Scholar
  211. Kober G (1980a) Koronarangiographie zur Differentialdiagnose anderer Herzkrankheiten. In: Kaltenbach M, Roskamm H (Hrsg) Vom Belastungs-EKG zur Koronarangiographie. Springer, Berlin Heidelberg New York, S 348–351CrossRefGoogle Scholar
  212. Kober G (1980b) Kollateralen. In: Kaltenbach M, Roskamm H (Hrsg) Vom Belastungs-EKG zur Koronarangiographie. Springer, Berlin Heidelberg New York, S 144–151Google Scholar
  213. Kondo M, Kubo A, Yamazaki H, Ohsuzu F, Honda S, Tsugu T, Masaki H, Kinoshita F, Hashimoto S (1978) Thallium-201 myocardial imaging for evaluation of right ventricular overloading. J Nucl Med 19:1197–1203Google Scholar
  214. Küper K, Anger K (1981) Innerbetriebliche Organisation und Management in der Nuklearmedizin. Ein erprobtes Hardware- und Softwarekonzept. In: Pöppl SJ, Pretschner DP (Hrsg) Systeme und Signalverarbeitung in der Nuklearmedizin. Springer, Berlin Heidelberg New York, S 29–38CrossRefGoogle Scholar
  215. Laguens RP, Gomez-Dumm CLA (1967) Fine structure of myocardial mitochondria in rats after exercise for one-half to two hours. Circ Res 21:271–279PubMedGoogle Scholar
  216. Lagunas-Solar MC, Jungerman JA, Peek NF, Theus RM (1978) Thallium-201 yields and excitation functions for the lead radioactivities produced by irradiation of natural thallium with 15–60 MeV protons. Int J Appl Radiat Isot 29:159–165CrossRefGoogle Scholar
  217. Lebowitz E, Greene MW, Fairchild R, Bradley-Moore PR, Atkins HL, Ansari AN, Richards P, Belgrave E (1975) Thallium-201 for medical use. I. J Nucl Med 16:151–155PubMedGoogle Scholar
  218. Lederer CM, Hollander JM, Perlman I (1967) Table of Isotopes, 6th edn. Wiley, New York London SydneyGoogle Scholar
  219. Lederer CM, Shirley VS (eds) (1978) Table of isotopes, 7th edn. Wiley, New York Chichester Brisbane TorontoGoogle Scholar
  220. Lenaers A, Block P, Thiel E van, Lebedelle M, Becquevort P, Erbsmann F, Ermans AM (1977) Segmental analysis of T1-201 stress myocardial scintigraphy. J Nucl Med 18:509–516PubMedGoogle Scholar
  221. Leppo J, Yipintsoi T, Blankstein R, Bontemps R, Freeman LM, Zohman L, Scheuer J (1979) Thallium-201 myocardial scintigraphy in patients with triple-vessel disease and ischemic exercise stress tests. Circulation 59:714–721PubMedGoogle Scholar
  222. Leppo J, Boucher CA, Okada RD, Strauss HW, Pohost GM (1981) Utility of serial thallium imaging following dipyridamole. Am J Cardiol 47:483 (abstr)CrossRefGoogle Scholar
  223. Leppo J, Boucher CA, Okada RD, Newell JB, Strauss HW, Pohost GM (1982) Serial thallium-201 myocardial imaging after dipyridamole in infusion: diagnostic utility in detecting coronary stenoses and relationship to regional wall motion. Circulation 66:649–657PubMedCrossRefGoogle Scholar
  224. Lewis SE, Stokely EM, Bonte FJ (1979) Physics and instrumentation. In: Parkey RW, Bonte FJ, Buja LM, Willerson JT (eds) Clinical nuclear cardiology. Appleton-Country-Crofts, New York, pp 9–63Google Scholar
  225. Lewis SE, Willerson JT, Parkey RW, Stokely EM, Lewis M, Buja LM (1979a) Scintigraphic methods for sizing myocardial infarction. In: Parkey RW, Bonte FJ, Buja LM, Willerson JT (eds) Clinical nuclear cardiology. Appleton-Century-Crofts, New York, pp 225–254Google Scholar
  226. Lichtlen PR, Engel HJ, Hundshagen H (1977) Regional myocardial blood flow in normal and poststenotic areas after nitroglycerine, betablockade (Atenolol), coronary dilatation (Dipyridamole) and calcium antagonism (Nifidepine). Herz 2:81Google Scholar
  227. Lichtlen P, Liese W, Leitz K, Borst HG (1978) Postoperative Klinik nach aorto-koronarem Venen-Bypass in Relation zum Ausmass der Revaskularisation. Z Kardiol 67:83PubMedGoogle Scholar
  228. Lichtlen P, Rafflenbeul W (1979) Kollateralkreislauf. In: Lichtlen PR (Hrsg) Koronarangiographie, perimed, Erlangen, S 230–247Google Scholar
  229. Lichtlen P (1979) Koronarangiographie und Klinik der koronaren Herzkrankheit. In: Lichtlen P (ed) Koronarangiographie. perimed, Erlangen, S 359–374Google Scholar
  230. Lichtlen P (1979a) Koronarangiographie und Prognose der koronaren Herzkrankheit. In: Lichtlen P(ed) Koronarangiographie. perimed, Erlangen, S 375–385Google Scholar
  231. Lichtlen PR, Engel HJ, Wolf R, Pretschner P (1979c) Regional myocardial blood flow in patients with coronary artery disease after nifedipine. In: Lichtlen PR, Kimura E, Taira N (eds) International adalat panel discussion. New experimental and clinical results. Excerpta Medica, Amsterdam Oxford Princeton, pp 69–84Google Scholar
  232. Lichtlen P (1979d) Indikationen zur Koronarangiographie. In: Lichtlen PR (Hrsg) Koronarangiographie. perimed, Erlangen, S 465–190Google Scholar
  233. Lie R, Thomas RG, Scott JK (1960) The distribution and excretion of Tl-204 in the rat with suggested MPC’s and a bio-assay procedure. Health Phys 2:334PubMedCrossRefGoogle Scholar
  234. Lieki, Wellens HJ, Schuilenburg RM, Becker AE, Durrer D (1974) Factors influencing prognosis of bundle branch block complicating acute antero-septal infarction. The value of His bundle recordings. Circulation 50:935–941Google Scholar
  235. Llaurado JG, Madden JA, Maede RC, Smith GA (1978) Distribution of thallium-201 injected into rats following stress: imaging, organ to plasma uptake ratios, and myocardial kinetics. J Nucl Med 19:172–177PubMedGoogle Scholar
  236. Llaurado JG, Smith GA, Madden JA, Meade RC (1979) Partition of thallium-201 in isolated myocardial tissue of rats previously injected at rest or after exercise. J Nucl Med 20:1136–1141PubMedGoogle Scholar
  237. Llaurado JG, Smith GA, Madden JA (1981) Effects of exercise on kinetics and distribution of K-43 and Tl-201 in isolated myocardium: Concise communication. J Nucl Med 22:441–446PubMedGoogle Scholar
  238. Llaurado JG, Madden JA, Smith GA (1981a) Differences between 201 T1 and 43 Ktissue distribution in rested and exercised rats. Nucl Med 20:40–45Google Scholar
  239. Llaurado JG, Madden JA, Smith GA (1983) Effects of dietary magnesium deficiency on thallium-201 kinetics and distribution in rat myocardium: concise communication. J Nucl Med 24:402–407PubMedGoogle Scholar
  240. Löser R, Jehle J, Spiller P, Loogen F, Bircks W (1981) Langzeitergebnisse nach koronarer Revaskularisation — klinische, angiographische und hämodynamische Befunde. Z Kardiol 70:88–94PubMedGoogle Scholar
  241. Lösse B, Krönert H, Rafflenbeul D, Feinendegen LE, Loogen F (1979) Empfindlichkeit und Treffsicherheit der Thallium-201-Myokardszintigraphie bei der Diagnostik der koronaren Herzkrankheit und von Myokardschäden anderer Ursache. Z Kardiol 68:429–435PubMedGoogle Scholar
  242. Lösse B, Kuhn H, Rafflenbeul D, Krönert H, Hort W, Feinendegen LE, Loogen F (1980) Thallium-201-Myokardszintigraphie bei Patienten mit normalen Koronararterien und normalem Ventrikulogramm — Vergleich mit hämodynamischen, metabolischen und morphologischen Befunden. Z Kardiol 69:523PubMedGoogle Scholar
  243. Lösse B (1981) Kardiomyopathie, eine Indikation? In: Hör G, Felix R (Hrsg) Kardiovaskuläre Nuklearmedizin. Schnetztor, Konstanz, S 117–125Google Scholar
  244. Lösse B, v Lierde C, Rafflenbeul D, Krönert H, Bircks W, Feinedegen LF, Loogen F (1981a) Wert der Thallium-201-Myokardszintigraphie für die Beurteilung des Funktionszustandes aortokoronarer Bypass-Gefässe. Z Kardiol 70:231–237Google Scholar
  245. Loevinger R, Berman M (1968) A schema for absorbed-dose calculations for biologically-distributed radionuclides. MIRD Pamphlet, nr 1. J Nucl Med [Suppl 9] 1:7–14Google Scholar
  246. Loevinger R, Berman M (1976) A revised schema for calculating the absorbed dose from biologically distributed radionuclides. Medical Internal Radiation Dose Commitee Pamphlet, nr 1. Revised, Society of Nuclear Medicine, New YorkGoogle Scholar
  247. Lordieck W, Reichertz PL (1983) Die EDV in den Krankenhäusern der Bundesrepublik Deutschland. Springer, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  248. Love WD, Romney RB, Burch GE (1954) A comparison of the distribution of potassium and exchangeable rubidium in the organs of the dog, using rubidium-86. Circ Res 2:112PubMedGoogle Scholar
  249. Luig H (1984) Funktionsszintigraphie der linken Herzkammer. Thieme, Stuttgart New YorkGoogle Scholar
  250. Lund A (1956) The effect of various substances on the excretion and the toxicity of thallium in the rat. Acta Pharmacol Toxicol (Copenh) 12:260–268CrossRefGoogle Scholar
  251. Lusted LB (1978) General problems in medical decision making with comments on ROC analysis. Semin Nucl Med VIII:299–306CrossRefGoogle Scholar
  252. Maddhi J, Garcia E, Berman D, Forrester J, Swan HJC, Waxman A (1980) Quantitative analysis of stress and redistribution thallium-201 myocardial scintigrams improves detection and evaluation of extent of coronary artery disease. J Nucl Med 21: p 51 (abstr)Google Scholar
  253. Maddahi J, Ganz W, Ninomiya K, Hashida J, Fishbein MC, Mondker A (1981) Myocardial salvage by intracoronary thrombolysis in evoking acute myocardial infarction: evaluation using intracoronary injection of thallium-201. Am Heart J 102:664–674PubMedCrossRefGoogle Scholar
  254. Makler PT, Lavine SJ, Denenberg BS, Bove AA, Idell S (1981) Redistribution on the thallium scan in myocardial sarcoidosis: concise communication. J Nucl Med 22:428–432PubMedGoogle Scholar
  255. Markiewicz W, Houston N, DeBusk RF (1977) Exercise testing soon after myocardial infarction. Circulation 56:26–31PubMedGoogle Scholar
  256. Markis JE, Malagold M, Parker JA, Silverman KJ, Barry WH, Also AV, Paulin S, Grossman W, Braunwald E (1981) Myocardial salvage after intracoronary thrombolysis with streptokinase in acute myocardial infarction: assessment by intracoronary thallium-201. N Eng J Med 305:777–782CrossRefGoogle Scholar
  257. Martin MJ, Blichert-Toft PH (1970) Radioactive atoms, Auger-electron, α-, β-,γ-, and X-ray data. Nucl Data Tables A8:1–198CrossRefGoogle Scholar
  258. Maseri A, Mimmo R, Chierchia S, Marchesic C, Pesola A, L’Abbate A (1975) Coronary artery spasm as a cause of acute ischemie in patients. Haemodynamic and angiographic documentation. Clin Res 23:195AGoogle Scholar
  259. Maseri A, Parodi O, Severi S, Pesola A (1976) Transient transmural reduction of myocardial blood flow, demonstrated by thallium-201 scintigraphy, as a cause of variant angina. Circulation 54:280–288PubMedGoogle Scholar
  260. Massie B, Botvinick EH, Shames D, Taradash M, Werner J, Schiller N (1978) Myocardial perfusion scintigraphy in patients with mitral valve prolapse. Circulation 57:19–26PubMedGoogle Scholar
  261. Massie BM, Botvinick EH, Arnold S, Shames D, Brundage B, Sheldon K (1979) Effect of contrast enhancement on the sensitivity and specificity of Tl-201 scintigraphy. Am J Cardiol 43:357CrossRefGoogle Scholar
  262. Massie BM, Botvinick EH, Brundage BH (1979a) Correlation of Thallium-201 scintigrams with coronary anatomy: factors affecting region by region sensitivity. Am J Cardiol 44:616CrossRefGoogle Scholar
  263. Massie BM, Hollenberg M, Wisneski JA, Go M, Gertz EW, Henderson ST (1983) Scintigraphic quantification of myocardial ischemia: a new approach. Circulation 68:747–755PubMedCrossRefGoogle Scholar
  264. Maul FD, Standke R, Hör G (1982) Nuklearmedizinische Diagnostik des akuten Myokardinfarktes. Therapiewoche 32:6322–6329Google Scholar
  265. McCarthy DM, Blood DK, Sciacca RR, Cannon PJ (1979) Single dose myocardial perfusion imaging with thallium-201: Application in patients with nondiagnostic electrocardiographic stress tests. Am J Cardiol 43:899PubMedCrossRefGoogle Scholar
  266. McCarthy DM, Sciacca RR, Blood DK, Cannon PJ (1982) Discriminant function analysis using thallium-201 scintiscans and exercise stress test variables to predict the presence and extent of coronary artery disease. Am J Cardiol 49:1917–1926PubMedCrossRefGoogle Scholar
  267. Mclntosh HD, Garcia JA (1978) The first decade of aortocoronary bypass grafting, 1967–1977, a review. Circulation 57:405–431Google Scholar
  268. McKillop JH, Bessent RG, Murray RG, Turner JG, Tweddel A, Greig WR (1978) A quantitative approach to the analysis of the normal thallium-201 myocardial image. Eur J Nucl Med 3:223PubMedCrossRefGoogle Scholar
  269. McKillop JH, Murray RG, Turner JG, Bessent RG, Lorimer AR, Greig WR (1979) Can the extent of coronary artery disease be predicted from thallium-201 myocardial images? J Nucl Med 20:715–719Google Scholar
  270. McKillop JH, Billingham M, Schroeder JS, McDougall IR (1982) Correlation of an abnormal rest 201-T1 myocardial image: pathological findings in cardiac transplant recipients. Eur J Nucl Med 7:243–247PubMedGoogle Scholar
  271. McKusick KA, Bingham J, Phost G, Strauss HW (1978) Comparison of defect detection on ungated vs. gated thallium-201 cardiac images. J Nucl Med 19:725Google Scholar
  272. McNeer JF, Margolis JR, Lee KL, Kisso JA, Peter RH, Kong Y, Behar VS, Wallace AG, McCants CB, Rosati RA (1978) The role of exercise in the evaluation of patients for ischemic heart disease. Circulation 57:64–70PubMedGoogle Scholar
  273. McNeil BJ, Adelstein SJ (1976) Determining the value of diagnostic and screening tests. J Nucl Med 17:439–448PubMedGoogle Scholar
  274. Meade RC, Bamrah VS, Horgan JD, Ruetz PP, Kronenwetter CH, Yeh EL (1978) Quantitative methods in the evaluation of thallium-201 myocardial perfusion images. J Nucl Med 19:1175–1178PubMedGoogle Scholar
  275. Meindl S, Adam W, Pfaffenstiel P (1983) Weiterentwicklung der quantitativen Auswertung der Myokardszintigraphie mit Tl-201. Nucl Med XXII:63–67Google Scholar
  276. Meller J, Rudin A, Goldsmith S, Richard AD, Gorlin R, Teichholz LE, Herman MV (1977) Spectrum of exercise 201-thallium myocardial imaging in patients with chest pain and normal coronary angiograms. Circulation 56:890 (abstr)Google Scholar
  277. Melin JA, Piret LJ, Vanbutsele RJM, Rousseau MF, Cosyns J, Brasseur LA, Beckers C, Detry JMR (1981) Diagnostic value of exercise electrocardiography and thallium myocardial scintigraphy in patients without previous myocardial infarction: a Bayesian approach. Circulation 63:1019–1024PubMedCrossRefGoogle Scholar
  278. Melin J, Wijns W, Detry JM (1984) Probability analysis for noninvasive evaluation of patients with suspected coronary artery disease. In: Simoons ML, Reiber JHC (eds) Nuclear imaging in clinical cardiology. Nijhoff, Boston The Hague Dordrecht Lancaster, pp 219–231CrossRefGoogle Scholar
  279. Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med VIII:283–298CrossRefGoogle Scholar
  280. Mews GC, Zir LM, Strauss HW, Guiney TE, Dinsmore RE, Pohost GM (1978) A critical look at ‘subcritical’ coronary stenoses with Tl-201. Circulation [Suppl II]:58 II–181Google Scholar
  281. Montz R, Mathey D, Bleifeld W (1981) Koronararterien-Spasmus: Tl-201 Szintigraphie nach medikamentöser Provokation. In: Hör G, Felix R (Hrsg) Kardiovaskuläre Nuklearmedizin. Schnetztor, Konstanz, S 127–133Google Scholar
  282. Moore MM, Shearer DR (1983) The uncertain specific gamma-ray constant for Tl-201. J Nucl Med 24:645PubMedGoogle Scholar
  283. Moore RH, Alpert NM, Strauss HW (1983) A variable angle slant-hole collimator. J Nucl Med 24:61–65PubMedGoogle Scholar
  284. Mostbeck A, Steinbach K, Köhn H, Frohner K, Bialonczyk C, Unger G, Meisl F (1983) Beurteilung der systemischen Lyse des akuten Myokardinfarktes mittels Radionuklidventrikulographie und Thallium-Myokardszintigraphie mit Inklusion von SPECT. Radiobiol Radiother 24:799–804Google Scholar
  285. Muehllehner G (1979) Effect of crystal thickness on scintillation camera performance. J Nucl Med 20:992–993PubMedGoogle Scholar
  286. Muehllehner G, Waker H, Sano R (1981) Standards for performance measurements in scintillation cameras. J Nucl Med 22:72–77PubMedGoogle Scholar
  287. Mueller TM, Marcus ML, Erhardt JC, Chaudhuri C, Abbound FM (1976) Limitations of thallium-201 myocardial perfusion scintigrams. Circulation 54:640–646PubMedGoogle Scholar
  288. Mueller HS, Fletcher JW, Ayres SM (1979) 201-thallium image and creatin kinase MB infarct size-evaluation of variable treatment responses. Circulation 60:11–163 (abstr)Google Scholar
  289. Mueller-Brand J, Pfisterer M (1982) Value of 201-thallium-scintigraphy in patients with aortic valve disease and angina pectoris. In: Raynaud C (ed) Nuclear medicine and biology II. Pergamon, Paris Oxford New York Toronto Sydney Frankfurt, pp 1484–1487Google Scholar
  290. Mullani NA, Goldstein RA, Gould KL, Marani SK, Fischer DJ, O’Brien HA Jr, Loberg MD (1983) Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 24:898–906PubMedGoogle Scholar
  291. Mullins LJ, Moore RD (1960) The movement of thallium ions in muscle. J Gen Physiol 43:759–773PubMedCrossRefGoogle Scholar
  292. Murray RG, McKillop JH, Bessent RG, Turner JG, Lorimer AR, Hutton I, Greig WR, Lawrie TDV (1979) Evaluation of thallium-201 exercise scintigraphy in coronary heart disease. Br Heart J 41:568PubMedCrossRefGoogle Scholar
  293. Narahara KA, Hamilton GW, Williams DL, Gould KL (1977) Myocardial imaging with thallium-201: an experimental model for analysis of the true myocardial and background image components. J Nucl Med 18:781–786PubMedGoogle Scholar
  294. Narahara KA, Ritchie JL (1978) Assessment of regional myocardial blood flow and graft patency after coronary artery revascularisation surgery. In: Ritchie JL, Hamilton GW, Wackers FJTh (eds) Thallium-201 myocardial imaging. Raven, New York, pp 101–110Google Scholar
  295. Nass HW (1977) New Tl-201 nuclear decay data. J Nucl Med 18:1047–1048PubMedGoogle Scholar
  296. NEMA (1980) Performance measurements of scintillation cameras, Standards Publication/No. NU 1 — 1980. NEMA, 2101 L Street, NW, Washington DCGoogle Scholar
  297. New England Nuclear, The Continuing Education Committee (1984) Thallium-201 myocardial imaging. J Nucl Med Techn 12:23–30Google Scholar
  298. Newth CJL, Corey ML, Fowler RS, Gilday DL, Gross D, Mitchell I (1981) Thallium myocardial perfusion scans for the assessment of right ventricular hypertrophy in patients with cystic flbrosis. Am Rev Respir Dis 124:463–468PubMedGoogle Scholar
  299. Nichols AB, Weiss MB, Sciacca RR, Cannon PJ, Blood DK (1983) Relationship between segmental thallium-201 uptake and regional myocardial blood flow in patients with coronary artery disease. Circulation 68:310PubMedCrossRefGoogle Scholar
  300. Nielson A, Morris KG, Murdock RH, Bruno FP, Cobb FR (1980) Linear relationship between distribution of thallium-201 and blood flow in ischemic and nonischemic myocardium during exercise. Circulation 61:797–801Google Scholar
  301. Nishiyama H, Lewis JT, Ashare AB, Saenger EL (1975) Interpretation of radionuclide liver images: do training and experience make a difference? J Nucl Med 16:11–16PubMedGoogle Scholar
  302. Nishiyama H, Romhilt DW, Williams CC, Adolph RJ, Sodd VJ, Gabel M, Lewis JT, Saenger EL (1977) Collimator evaluation for myocardial imaging with Tl-201. J Nucl Med 18:616 (abs)Google Scholar
  303. Nishiyama H, Romhilt DW, Williams CC, Adolph RJ, Sodd VJ, Blue JW, Lewis JT, Gabel M, van der Bel-Kahn JM (1978) Collimator evaluation for Tl-201 myocardial imaging. J Nucl Med 19:1067–1073PubMedGoogle Scholar
  304. Nishiyama H, Adolph RJ, Gabel M, Lukes SJ, Franklin D, Williams CC (1982) Effect of coronary blood flow on thallium-201 uptake and washout. Circulation 65:534–542PubMedCrossRefGoogle Scholar
  305. Nuklearmedizin-Informationen 5 (1982) Arbeitsgemeinschaft Kardiovaskuläre Nuklearmedizin. Dtsch Ges Nuklearmed eV, Med Hochschule Hannover 17–21Google Scholar
  306. Ogris E, Pachinger O, Sochor H (1981) Aussagefähigkeit der Myokardszintigraphie mit Thallium-201 zur Beurteilung des Ergebnisses nach aortokoronarer Bypassoperation (Koronarchirurgie II). In: Hör G, Felix R (Hrsg) Kardiovaskuläre Nuklearmedizin. Sehnetztor, Konstanz, S 93–98Google Scholar
  307. Okada RD, Jacobs ML, Daggett WM, Leppo J, Strauss HW, Newell JB, Moore R, Boucher CA, O’Keefe D, Pohost GM (1982) Thallium-201 kinetics in nonischemic canine myocardium. Circulation 65:70–77PubMedCrossRefGoogle Scholar
  308. Okada RD, Leppo JA, Strauss HW, Boucher CA, Pohost GM (1982a) Mechanisms and time course for the disappearance of thallium-201 defects at rest in dogs. Am J Cardiol 49:699–706CrossRefGoogle Scholar
  309. Okada RD, Dai YH, Boucher CA, Pohost GM (1984) Significance of increased lung thallium-201 activity on serial cardiac images after dipyridamole treatment in coronary heart disease. Am J Cardiol 53:470–475PubMedCrossRefGoogle Scholar
  310. Pachinger O, Sochor H, Ogris E, Probst P, Klicpera M, Kaindl F (1982) Assessment of myocardial salvage after intracoronary streptokinase therapy with metabolic and perfusion imaging. In: Raynaud C (ed) Nuclear medicine and biology, vol II. Pergamon, Paris Oxford New York Toronto Sydney Frankfurt, pp 1477–1480Google Scholar
  311. Page DL, Caulfield JB, Kastor JA, DeSantis RW, Sanders CA (1971) Myocardial changes associated with cardiogenic shock. N Engl J Med 285:133–137PubMedCrossRefGoogle Scholar
  312. Parker JA, Markis JE, Silverman KJ, Heller GV, Royal HD, Koladny GM, Als AV, Grossman W, Braunwald E, Paulin S (1982) Intracoronary thallium-201 assessment of thrombolysis in acute myocardial infarction: a technique for imaging thallium distribution before and after therapy. In: Raynaud C (ed) Nuclear medicine and biology, vol I. Pergamon, Paris Oxford New York Toronto Sydney Frankfurt, pp 61–64Google Scholar
  313. Parkey RW, Bonte FJ, Buja LM, Stokely EM, Willerson JT (1977) Myocardial infarct imaging with technetium-99m phosphates. Semin Nucl Med 7:15–28PubMedCrossRefGoogle Scholar
  314. Parkey RW, Bonte FJ, Buja LM, Willerson JT (eds) (1979) Clinical nuclear cardiology. Appleton-Century-Crofts. New YorkGoogle Scholar
  315. Parkey RW, Lewis SE, Pulido J, Vonte FJ, Willerson JT (1979a) Combined hot spot Technetium-99m and cold spot Thallium-201 imaging to detect overall myocardial injury. In: Parkey RW, Bonte FJ, Buja LM, Willerson FT (eds) Clinical nuclear cardiology. Appleton-Century-Crofts, New York, pp 107–199Google Scholar
  316. Patterson RE, Horowitz SF, Eng C, Rudin A, Meller J, Halgash DA, Pichard AD, Goldsmith SJ, Herman MV, Gorlin R (1982) Can exercise electrocardiography and thallium-201 myocardial imaging exclude the diagnosis of coronary artery disease? Bayesian Analysis of the clinical limits of exclusion and indication for coronary angiography. Am J Cardiol 49:1127–1135PubMedCrossRefGoogle Scholar
  317. Patterson RE, Eng C, Horowitz SF (1984) Practical diagnosis of coronary artery disease: a Bayes’ theorem nomogram to correlate clinical data with noninvasive exercise tests. Am J Cardiol 53:252–256PubMedCrossRefGoogle Scholar
  318. Patton DD (1978) Introduction to clinical decision making. Semin Nucl Med VIII:273–282CrossRefGoogle Scholar
  319. Peterson KL (1980) Basic anatomy and physiology of the heart: implications for Nuclear Cardiology. In: Righetti A, Donath A (eds) Prog Nucl Med 6. Cardiovascular nuclear medicine. Karger, Basel München Paris London New York Sydney, pp 1–17Google Scholar
  320. Pfisterer ME (1982) Nuklearmedizinische Herzdiagnostik. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  321. Pfisterer ME, Williams RJ, Gordon DG, Swanson SM, Battler A, Ceretto WJ, Ashburn WL, Froelicher VF (1980) Comparison of rest/exercise in patients with suspected coronary artery disease. Cardiology 66:43PubMedCrossRefGoogle Scholar
  322. Pfisterer M, Müller-Brand J, Bründler H, Cueni T (1982) Prevalence and significance of reversible radionuclide ischemic perfusion defects in symptomatic aortic valve disease patients with or without concomitant coronary disease. Am Heart J 102:92CrossRefGoogle Scholar
  323. Pitt B, Strauss HW (1979) Clinical application of myocardial imaging with thallium. In: Strauss HW, Pitt B (eds) Cardiovascular nuclear medicine. 2nd edn. Mosby, St Louis Toronto London, pp 243–252Google Scholar
  324. Pohost GM, Beller GA, McKusick KA (1976) Thallium-201 redistribution following transient myocardial ischemia. J Nucl Med 17:535Google Scholar
  325. Pohost GM, Zir LM, Moore RH, McKusick KA, Guiney TE, Beller GA (1977) Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 55:294–302PubMedGoogle Scholar
  326. Pohost GM, Fallon JT, Strauss HW (1979) Radionuclide technique in cardiomyopathy. In: Strauss HW, Pitt B (eds) Cardiovascular nuclear medicine. Mosby, St Louis Toronto London, pp 326–340Google Scholar
  327. Pohost GM, Boucher CA, Zir LM, McKusick GA, Beller GA, Strauss W (1979a) The thallium-201 stress test: the quantitative approach revisited. Circulation [Suppl 60] II:II-149Google Scholar
  328. Pohost GM, Alpert NM, Ingwall JS, Strauss HW (1980) Thallium redistribution: mechanisms and clinical utility. Semin Nucl Med X:70–93CrossRefGoogle Scholar
  329. Pretschner DP (1979) Einsatz von Digitalrechnern in der nuklearmedizinischen Herzfunktionsdiagnostik. In: Ehlers CTH, Klar R (Hrsg) Informationsverarbeitung in der Medizin, Wege und Irrwege. Springer, Berlin Heidelberg New York, S 708–721Google Scholar
  330. Pretschner DP (1980a) Prinzipien parametrischer Darstellung der Herzfunktion in der Nuklearmedizin. Nuklearmedizin 2:91–106Google Scholar
  331. Pretschner DP (1981) Planar imaging and picture analysis in nuclear medicine. In: Höhne HH (ed) Digital image processing in medicine. Springer, Berlin Heidelberg New York, pp 149–195CrossRefGoogle Scholar
  332. Pretschner DP, Freihorst J, Gleitz CD, Hundeshagen H (1979) A computer generated 3-D model of the left ventricle for quantification of myocardial morphology and function using radiopharmaceuticals. Computers in Cardiology, Genf, IEEE 415–418Google Scholar
  333. Pretschner DP, Freihorst J, Gleitz CD, Hundshagen H (1979a) 201-Tl myocardial scintigraphy: a 3-dimensional model for the improved quantification of zones with decreased uptake. Inf Proc in Med Imaging, INSERM. 88:409–426Google Scholar
  334. Pretschner DP, Wolf R, Lichtlen P, Hundeshagen H (1979b) Quantitative Auswertung von Myokardszintigrammen. Nuklearmedizin [Suppl] 2:48–58Google Scholar
  335. Pretschner DP, Hundeshagen H (1980) Ein gekammertes Herzmuskelphantom für die Myokardszintigraphie. Nuc Compact 11:269–272Google Scholar
  336. Pretschner DP, Pfeiffer G (1981a) Erzeugung einer Kommandosprache für nuklearmedizinische Signal- und Bildverarbeitung aus einem allgemeinen Dialogsystem. In: Pöppl SJ, Pretschner DP (Hrsg) Systeme und Signalverarbeitung in der Nuklearmedizin. Springer, Berlin Heidelberg New York, S 187–204CrossRefGoogle Scholar
  337. Pretschner DP, Kienscherf R, Lichtlen P, Hundeshagen H (1984) Zur Differenzquantifizierung der T1-201-Myokardszintigraphie vor und nach aortokoronarer Venenbypass-Operation mit rekonstruktiver Referenzmodellierung. In: Hör G (Hrsg) Kardiovaskuläre Nuklearmedizin. Kern und Birner, Frankfurt (im Druck)Google Scholar
  338. Pretschner DP, Kienscherf R, Freihorst J, Gleitz CD, Hundeshagen H (1984a) Difference quantitation of planar and tomographic heart scintigrams with identification of segments using reconstructive 3 D reference modelling. Eur J Nucl Med 9: (in press)Google Scholar
  339. Prick JJG, Smitt WGS, Muller L (eds) (1955) Thallium poisoning. Elsevier, AmsterdamGoogle Scholar
  340. Price RR, Lindstrom DP, Hillis S, Friesinger GC, Brill AB (1975) Analytical techniques for image superposition. Proc 5th Symp on Sharing of Comp Programs and Technology in Nucl Med, Salt Lake City, pp 241–250Google Scholar
  341. Quaim SM, Weinreich R, Ollig H (1979) Production of 201-Tl and 203-Pb via proton induced nuclear reactions on natural thallium. Int J Appl Radiat Isotop 30:85–95CrossRefGoogle Scholar
  342. Rabinovitch M, Rowland TW, Castaneda AR, Treves S (1979) Thallium-201 scintigraphy in patients with anomalous origin of the left coronary artery from the main pulmonary artery. J Pediatr 94:244–247PubMedCrossRefGoogle Scholar
  343. Rabinovitch M, Fisher K, Gamble W, Reid L, Treves S (1979a) Thallium-201: Quantitation of right ventricular hypertrophy in chronically hypoxic rats. Radiology 130:223–225Google Scholar
  344. Raff U, Spitzer VM, Hendee WR (1984) Practicality of NEMA performance specification measurements for user-based acceptance testing and routine quality assurance. J Nucl Med 25:679–687PubMedGoogle Scholar
  345. Rao DV, Govelitz GF, Sastry KSR (1983) Radiotoxicity of Thallium-201 in mouse testes: inadequacy of conventional dosimetry. J Nucl Med 24:145–153PubMedGoogle Scholar
  346. Rehn T, Griffith L, Achuff S, Pond M (1979) Value and limitations of thallium-201 imaging to detect bypass patency. Am J Cardiol 43:434Google Scholar
  347. Reiber JHC, Lie SP, Simoons ML, Wijns W, Gerbrands JJ (1982) Computer quantitation of location, extent and type of thallium-201 myocardial perfusion abnormalities. Proc ISMiii ’82, IEEE Comp Soc 123–128Google Scholar
  348. Remy H (1965) Lehrbuch der Anorganischen Chemie, 12. Aufl. Bd 1. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, S 456Google Scholar
  349. Richardson RL (1977) Anger scintillation camera. In: Rollo FD (ed) Nuclear medicine physics, Instrumentation and Agents. Mosby, St Louis, pp 231–270Google Scholar
  350. Rigo P, Becker LC, Griffith LSC, Alderson PO (1979) Influence of coronary collateral vessels on the results of thallium-201 myocardial stress imaging. Am J Cardiol 44:452–458PubMedCrossRefGoogle Scholar
  351. Rigo P, Bailey IK, Griffith LSC, Pitt B, Burrow RD, Wagner HN Jr, Becker LC (1980) Value and limitations of segmental analysis of stress thallium myocardial imaging for localization of coronary artery disease. Circulation 61:973PubMedGoogle Scholar
  352. Rinck PA, Beckmann HO (1982) Myocardial uptake of thallious ion. In: Raynaud D (ed) Nuclear medicine and biology, vol IV. Pergamon, Paris Oxford New York Toronto Sydney Frankfurt, pp 3018–3020Google Scholar
  353. Ritchie JL, Narahara KA, Trobaugh GB, Williams DL, Hamilton GW (1977) Thallium-201 myocardial imaging before and after coronary revascularisation. Assessment of regional myocardial blood flow and graft patency. Circulation 56:830PubMedGoogle Scholar
  354. Ritchie JL, Hamilton GW, Wackers FJTh (eds) (1978) Thallium-201 myocardial imaging. Raven, New YorkGoogle Scholar
  355. Ritchie JL, Zaret BL, Strauss HW, Pitt B, Berman DS, Schelbert HR, Ashburn WL, Berger HJ, Hamilton GW (1978a) Myocardial imaging with Thallium-201: A multicenter study in patients with angina pectoris or acute myocardial infarction. Am J Cardiol 42:345–350CrossRefGoogle Scholar
  356. Rivas F, Cobb FR, Bache RJ, Greenfield JC (1976) Relationship between blood flow to ischemic regions and extent of myocardial infarction. Serial measurement of blood flow to ischemic regions in dogs. Circ Res 30:439–447Google Scholar
  357. Roberts WC (1979) Cardiomyopathy: morphologic features. In: Strauss HW, Pitt B (eds) Cardiovascular nuclear medicine, 2nd edn. Mosby, St Louis Toronto London, pp 307–325Google Scholar
  358. Robinson PS, Crowther A, Jenkins BS, Webb-Peploe MM, Coltart DJ (1978) Exercise testing and thallium-201 myocardial perfusion imaging in evaluation of aortocoronary bypass surgery. Br Heart J 40:1065Google Scholar
  359. Rollo FD (1977a) Evaluating imaging devices. In: Rollo FD (ed) Nuclear medicine physics, instrumentation and agents. Mosby, St Louis, pp 436–452Google Scholar
  360. Rollo FD (1977b) Quality assurance in nuclear medicine. In: Rollo FD (ed) Nuclear medicine physics, instrumentation and agents. Mosby, St Louis, pp 322–360Google Scholar
  361. Rollo FD, Harris CC (1977) Factors affecting image formation. In: Rollo FD (ed) Nuclear medicine physics, instrumentation and agents. Mosby, St Louis, pp 387–435Google Scholar
  362. Rosenblatt A, Lowenstein JM, Kerth W, Handmaker H (1977) Post-exercise thallium-201 myocardial scanning: a clinical appraisal. Am Heart J 94:463–470PubMedCrossRefGoogle Scholar
  363. DeRouen TA, Murray JA, Owen W (1977) Variability in the analysis of coronary arteriograms. Circulation 55:324–328PubMedGoogle Scholar
  364. Royal HD, Brown PH, Claunch BC (1979) Effects of a reduction in crystal thickness on Anger-camera performance. J Nucl Med 20:977–980PubMedGoogle Scholar
  365. Royal HD, Parker JA, Uren RF, Koldny GM (1983) Costs effectiveness of the all-digital Nuclear Medicine department. Radiology 148:860–861PubMedGoogle Scholar
  366. Rubin KA, Morrison J, Padnick MB, Binder AJ, Chiaramida S, Margouleff D, Padmanabhan VT, Gulotta (1979) Idiopathic hypertrophic subaortic stenosis: evaluation of anginal symptoms with thallium-201 myocardial imaging. Am J Cardiol 44:1040–1045PubMedCrossRefGoogle Scholar
  367. Samson G, Wackers FJTh, Becker AE, Busemann-Sokole E, Schoot JB van der (1978) Distribution of Thallium-201 in man. In: Oeff K, Schmidt HAE (Hrsg) Nuklearmedizin, Verhandlungsbericht der 14. Int Jahrestagung Ges für Nuklearmedizin, Bd 1. Medico-Informationsdienste, Berlin: 385–389Google Scholar
  368. Sano RM, Tinkel JB, LaVallee CA, Freedman GS (1978) Consequences of crystal thickness reduction on gamma camera resolution and sensitivity. J Nucl Med 19:712–713Google Scholar
  369. Sano RM (1980) Performance standard-characteristics and test conditions for scintillation cameras. Int Symp Med Radionuclide Imaging, Heidelberg, IAEA-SM-247Google Scholar
  370. Sapirstein LA (1956) Fractionation of the cardiac output in rats with isotopic potassium. Circ Res 4:689PubMedGoogle Scholar
  371. Sapirstein LA (1958) Regional bloodflow by fractional distribution of indicators. Am J Physiol 193:161–168PubMedGoogle Scholar
  372. Sarper R, Fajman WA, Rao MJ, Tarcan YA (1981) Evaluation of five mobile cameras. Picker J Nucl Med Instr 2:36–39Google Scholar
  373. Satter P (1979) Transluminale Katheterdilatation von Koronararterienstenosen: eine Alternative zur Koronarchirurgie? Dtsch Med Wochenschr 104:1687PubMedCrossRefGoogle Scholar
  374. Sauer E, Sebening H, Hör G, Lutilsky L, Lichte H, Daum S, Pabst HW (1977) Myokardszintigraphie mit 201-Thallium bei Patienten mit pulmonaler Hypertonie. In: Daum S (Hrsg) Cor pulmonale chronicum. Eur Soc Clin Resp Physiol. Eur Soc Cardiol, München, S 463Google Scholar
  375. Sauer E, Sebening H, Dressler J, Lutilsky L, Ulm K, Hör G, Pabst HW, Blömer H (1979) Thallium-201-Serienmyokardszintigraphie bei koronarer Herzkrankheit. Vergleich mit der Elektrokardiographie und Koronarangiographie. Z Kardiol 68:454PubMedGoogle Scholar
  376. Sauer E, Sebening H (1980) Myokard- und Ventrikelszintigraphie. Boehringer, MannheimGoogle Scholar
  377. Sbarbaro JA, Karunaratne H, Cantey S, Harper PV, Resnekov L (1979) Thallium-201 imaging in assessment of aortocoronary artery bypass graft patency. Br Heart J 42:553PubMedCrossRefGoogle Scholar
  378. Scheibe PO, Livinghouse DE (1982) Medical imaging systems: architectural and design considerations. In: Esser PD (ed) Digital imaging. Soc of Nucl Med, New York, pp 3–19Google Scholar
  379. Schelbert HR, Ashburn WL, Chauncey DM, Halpern SE (1974) Comparative myocardial uptake of intravenously administered radionuclides. J Nucl Med 15:1092–1100PubMedGoogle Scholar
  380. Schelbert H, Ingwall J, Watson R, Ashburn W (1977) Factors influencing the myocardial uptake of thallium-201. J Nucl Med 18:598–599 (abstr)Google Scholar
  381. Schicha H, Rentrop P, Facorro L, Karsch KR, Blanke H, Kreuzer H, Emrich D (1980) Ergebnisse der quantitativen Myokardszintigraphie mit Thallium-201 in Ruhe und unter maximaler Belastung — Kritische Analyse des prädikativen Wertes und der klinischen Anwendung. Z Kardiol 69:31PubMedGoogle Scholar
  382. Schicha H, Blanke H, Rentrop P, Karsch KR, Kreuzer H, Emrich D (1980a) Myokardszintigraphie mit Thallium-201 zur Feststellung der Funktionsfähigkeit aortokoronarer Bypasse bei Mehr-Gefäss-KHK und Mehrfach-Bypassen. Z Kardiol 69:531Google Scholar
  383. Schicha H, Emrich D (1981) Aussagefähigkeit der Myokardszintigraphie mit Thallium-201 zur Beurteilung des Ergebnisses nach aortokoronarer Bypassoperation (Koronarchirurgie I) In: Hör G, Felix R (Hrsg) Kardiovaskuläre Nuklearmedizin. Schnetztor, Konstanz, S 83–91Google Scholar
  384. Schicha H, Emrich D (1983) Nuklearmedizin in der kardiologischen Praxis. Giebeler, DarmstadtGoogle Scholar
  385. Schmorak MR (1978) Nuclear data sheets for Tl-201. Nucl Data Sheets 25:193–234CrossRefGoogle Scholar
  386. Schneider E, Lütolf UM, Glanzmann Ch, Krayenbühl HP, Horst W (1977) Ein Jahr Erfahrung mit der 201-Thallium-Myokardszintigraphie in der Beurteilung koronarer Durchblutungsstörungen. Schweiz Med Wochenschr 107:1577PubMedGoogle Scholar
  387. Schoolmeester WL, Simpson AG, Sauerbrunn BJ, Fletcher RD (1981) Radionuclide angiographic assessment of left ventricular function during exercise in patients with a severely reduced ejection fraction. Am J Cardiol 47:804PubMedCrossRefGoogle Scholar
  388. Schuler G, Schwarz F, Hofmann M, Mehmel H, Manthey J, Mäurer W, Rauch B, Herrmann HJ, Kubier W (1982) Thrombolysis in acute myocardial infarction using intracoronary streptokinase: assessment by thallium-201 scintigraphy. Circulation 66:658–664PubMedCrossRefGoogle Scholar
  389. Schumacher W, Frost D, Albrecht HJ, Müller P, Herger H, Lück G (1979) Ein Abteilungs-Informationssystem für die Nuklearmedizin. Nucl Med 18:1–6Google Scholar
  390. Schwartz JS, Ponto R, Carlyle P, Forstrom L, Cohn JN (1978) Early redistribution of thallium-201 after temporary ischemia. Circulation 57:332–335PubMedGoogle Scholar
  391. Schwartz JS, Ponto RA, Farstrom LA, Bache RJ (1979) Mechanism of decrease in scintigraphic defect size after coronary occlusion. Circulation [Suppl II] 60:II-173 (abstr)Google Scholar
  392. Seides FS, Borner JS, Kent MK, Roning DR, McIntosh CC, Epstein SE (1978) Long-term anatomic fate of coronary-artery bypass grafts and functional status of patients five years after operation. N Engl J Med 298:1213–1217PubMedCrossRefGoogle Scholar
  393. Selwyn AP, Fox K, Shillingford JP (1978) Myocardial imaging with extractable cations and inert tracers: the effects of flow and metabolism. Clin Cardiol 1:60–67PubMedGoogle Scholar
  394. Shapiro AR (1977) The evaluation of clinical predictions. A method and initial application. N Engl J Med 226:1509–1514CrossRefGoogle Scholar
  395. Silber S, Klein U, Goppel L, Rinke H, Petri H, Weber M, Rudolph W (1977) Thallium-201 myocardial imaging in patients with hypertrophic cardiomyopathy and with right ventricular overload. Herz 2:176Google Scholar
  396. Silber S, Fleck E, Klein U, Rudolph W (1979) Wertigkeit der Thallium-201-Belastungsszintigraphie im Vergleich zur Belastungselektrokardiographie bei Patienten mit koronarer Herzerkrankung ohne Myokardinfarkt. Herz 4:359PubMedGoogle Scholar
  397. Silber S, Schwaiger M, Fleck E, Klein U, Rudolph W (1979a) Beurteilung des Ergebnisses einer koronaren Bypass-Operation mittels 201-Thallium-Szintigraphie. Z Kardiol 68:631Google Scholar
  398. Silber S, Schwaiger M, Klein U, Rudolph W (1981) Tomographische und planare Myokardszintigraphie mit 201-Thallium zur Beurteilung der Ergebnisse koronarchirurgischer Revaskularisationsmaßnahmen. In: Hör G, Felix R (Hrsg) Kardiovaskuläre Nuklearmedizin, Schnetztor, Konstanz, S 99–109Google Scholar
  399. Silverman KJ, Becker LC, Bulkley BH, Burow RD, Mellits ED, Kallman CH, Weisfeldt ML (1980) Value of early thallium-201 scintigraphy for predicting mortality in patients with acute myocardial infarction. Circulation 61:996–1003PubMedGoogle Scholar
  400. Simon TR, Parkey RW, Lewis SE (1983) Role of cardiovascular nuclear medicine in evaluating trauma and the postoperative patient. Semin Nucl Med XIII:123–141CrossRefGoogle Scholar
  401. Smith IC, Carson BL (1977) Trace metals in the environment, vol 1. Thallium. Ann Arbor Science, Ann ArborGoogle Scholar
  402. Smitherman TC, Osborn RC, Narahara KA (1978) Serial myocardial scintigraphy after a single dose of thallium-201 in men after acute myocardial infarction. Am J Cardiol 42:177–182PubMedCrossRefGoogle Scholar
  403. Snyder WS, Ford MR, Warner GG, Fisher HL Jr (1969) Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No 5. J Nucl Med [Suppl 3] 10:5–52Google Scholar
  404. Snyder WS, Ford MR, Warner GG, Watson SB (1975) ‘S’, Absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet no 11, New York. Society of Nuclear Medicine, S 1–257Google Scholar
  405. Sobel BE, Bresnahan GF, Shell WE, Yoder RD (1972) Estimation of infarct size in man and its relation to prognosis. Circulation 46:640–648PubMedGoogle Scholar
  406. Som P, Matsui K, Atkins HL, Lebowitz E, Greenberg DD, Ansari AN, Klopper JF, Sacker DF, Hathorn LF (1978) Microautoradiographic studies on the cellular localization of radiothallium. Nucl Med XVII:266–269Google Scholar
  407. Sorenson JA, Phelps ME (1980a) The anger camera: basic principles. In: Sorenson JA, Phelps ME (eds) Physics in nuclear medicine. Grune & Stratton, New York London Toronto Sydney San Francisco, pp 263–282Google Scholar
  408. Sorenson JA, Phelps ME (1980b) The anger camera: performance characteristics. In: Sorenson JA, Phelps ME (eds) Physics in nuclear medicine. Grune & Stratton, New York London Toronto Sydney San Francisco, pp 283–302Google Scholar
  409. Spiegelhoff DR, Yuille DL, Beranek AE (1980) Thallium scanning: A community hospital’s experience. J Nucl Med 21: p 50 (abstr)Google Scholar
  410. Spies SM, Meyers SN, Barresi V, Greis IM, DeBoer A (1977) A case of myocardial abscess evaluated by radionuclide techniques: case report. J Nucl Med 18:1089–1090PubMedGoogle Scholar
  411. Spormann V, Pretschner DP, Kiessling D, Borowsky D, Zywietz C, Wolters E (1981) Föderative EDV zur Auswertung nuklearmedizinischer Datenbestände mit dem Trägersystem DADIMOPS. In: Pöppl SJ, Pretschner DP (Hrsg) Systeme und Signalverarbeitung in der Nuklearmedizin. Springer, Berlin Heidelberg New York, S 46–58CrossRefGoogle Scholar
  412. Standke R, Hör G (1980) Sektoranalyse der myokardialen Thallium-201-Redistributionskinetik. Nuc Compact 11:249–255Google Scholar
  413. Standke R, Hör G, Maul FD (1982) Ventrikel und Myokardszintigraphie. Therapiewoche 32:6330–6341Google Scholar
  414. Staniloff HM, Diamond G, Forrester J, Berman D, Swan HJC (1982) Prediction of death and worsening chest pain with exercise electrocardiography and thallium scintigraphy. Am J Cardiol 49:967CrossRefGoogle Scholar
  415. Staniloff HM, Diamond GA, Freeman MR, Berman DS, Forrester JS (1982a) Simplified application of Bayesian analysis to multiple cardiologic tests. Clin Cardiol 5:630–636Google Scholar
  416. Stason WB, Fineberg HV (1982) Implications of alternative strategies to diagnose coronary artery disease. Circulation [Suppl III] 66:80–86Google Scholar
  417. Steingart RM, Wexler JP, Blaufox MD (1981) Pharmacologic intervention in cardiovascular nuclear medicine procedures. Semin Nucl Med XI:80–88CrossRefGoogle Scholar
  418. Steingart RM, Bontemps R, Scheuer J, Yipintsoi T (1982) Gamma camera quantitation of thallium-201 redistribution at rest in dog model. Circulation 65:542–550PubMedCrossRefGoogle Scholar
  419. Stolzenberg J, Kaminsky J (1978) Overlying breast as cause of false-politive thallium scans. Clin Nucl Med 3:229PubMedCrossRefGoogle Scholar
  420. Strasser R, Klepzig H (1981) Tageszeitliche Schwankungen der ischämischen ST-Strecken-Senkung im Belastungselektrokardiogramm. Dtsch Med Wochenschr 106:424PubMedCrossRefGoogle Scholar
  421. Strauss HW, Harrison K, Pitt B (1977) Thallium-201: noninvasive determination of the regional distribution of cardiac output. J Nucl Med 18:1167–1170PubMedGoogle Scholar
  422. Strauss HW, Pitt B, Rouleau J, Bailey IK, Wagner HN (1977a) Atlas of cardiovascular nuclear medicine. Mosby, St LouisGoogle Scholar
  423. Strauss HW, Pitt B (1977b) Thallium-201 as a myocardial imaging agent. Semin Nucl Med VII:49–58CrossRefGoogle Scholar
  424. Strauss HW, Pitt B (eds) (1979) Cardiovascular nuclear medicine, 2nd edn. Mosby, St Louis Toronto LondonGoogle Scholar
  425. Tajima T, Naito T, Dohi Y, Miyamae T (1981) 67-Ga and 201-Tl imaging in sarcoidosis involving the myocardium. Clin Nucl Med 6:120PubMedCrossRefGoogle Scholar
  426. Talas A, Pretschner DP, Wellhöner HH (1983) Pharmacokinetic parameters for thallium(I)-ions in man. Arch Toxicol 53:1–7PubMedCrossRefGoogle Scholar
  427. Talas A, Wellhöner HH (1983a) Dose-dependency of Tl+ kinetics as studied in rabbits. Arch Toxicol 53:9–16CrossRefGoogle Scholar
  428. Thompson WL, DePuey EG, Murphy PM, Buding JA (1984) Automated patient report-generation in Nuclear Medicine. J Nucl Med 25:692–696PubMedGoogle Scholar
  429. Thrall JH, Besozzi M, Kline R, Brady T, Rogers L, Keyes J Jr, Pitt B (1980) Thallium-201 imaging for detection of coronary artery disease: Comparison of planar and sevenpinhole tomographic techniques. J Nucl Med 21:71 (abstr)Google Scholar
  430. Todd-Pokropek AE, Pizer SM (1977) Displays in scintigraphy. In: Medical radionuclide imaging, vol I. IAEA, Vienna, pp 505–538Google Scholar
  431. Todd-Pokropek A (1982) Quality control, detection and display. In: Kuhl DE (ed) Principles of radionuclide imaging. Pergamon, Paris Oxford New York Toronto Sydney Frankfurt, pp 27–76Google Scholar
  432. Tresch DD, Soin JS, Siegel R, Love M, Keelan MH (1978) Mitral valve prolapse-evidence for myocardial perfusion abnormality. Am J Cardiol 41:441 (abstr)CrossRefGoogle Scholar
  433. Trobaugh GB, Wackers FJTh, Sokole EB, DeRouen TA, Ritchie JL, Hamilton GW (1978) Thallium-201 myocardial imaging: an inter institutional study of observer variability. J Nucl Med 19:359–363PubMedGoogle Scholar
  434. Trobaugh GB, Ritchie JL, Hamilton GW (1978a) Rest-exercise imaging in coronary artery disease. In: Ritchie L, Hamilton GW, Wackers FJTh (eds) Thallium-201 myocardial imaging, Raven, New York, pp 81–100Google Scholar
  435. Tubau JF, Bourassa MG, Chaitman BR, Waters D (1979) Influence of coronary collaterals on 14 lead ECG and thallium-201 exercise test results. Circulation 60:II-266 (abstr)Google Scholar
  436. Turner DA, Battle W, Deshmukh H, Colandrea MA, Snyder GJ, Fordham EW, Messer JV (1978) The predictive value of myocardial perfusion scintigraphy after stress in patients without previous myocardial infarction. J Nucl Med 19:249–255PubMedGoogle Scholar
  437. Turner DA (1978a) An intuitive approach to receiver operating characteristic curve analysis. J Nucl Med 19:213–220Google Scholar
  438. Uhl GS, Kay ThN, Hickmann JR (1981) Computerenhanced thallium scintigrams in asymptomatic men with abnormal exercise tests. Am J Cardiol 48:1037–1043PubMedCrossRefGoogle Scholar
  439. Umbach RE, Lange RC, Lee JC, Zaret BL (1978) Temporal changes in sequential quantitative thallium-201 imaging following myocardial infarction in dogs: comparison of four and twenty-four hour infarct images. Yale J Biol Med 51:597–603PubMedGoogle Scholar
  440. Verani MS, Marcus ML, Razzak MA, Ehrhardt JC (1978) Sensitivity and specificity of thallium-201 perfusion scintigrams under exercise in the diagnosis of coronary artery disease. J Nucl Med 19:773–782PubMedGoogle Scholar
  441. Verani MS, Marcus ML, Spoto G, Rossi NP, Ehrhardt JC, Razzak MA (1978a) Thallium-201 myocardial perfusion scintigrams in the evaluation of aorto-coronary saphenous bypass surgery. J Nucl Med 19:765–772Google Scholar
  442. DeVernejoul P, Ducassou D, Guiraud R, Robert J, Nouel JP, Witz H (1977) Atlas pratique de scintigraphie cardiaque. Kluwer Harrap Handbooks, LondonCrossRefGoogle Scholar
  443. Vogel R, Kirch D, LeFree M, Frischknecht J, Stelle P (1977) Effects of digitalis on resting and isometric exercise myocardial perfusion in patients with coronary artery disease and left ventricular dysfunction. Circulation 56:355–359PubMedGoogle Scholar
  444. Vogel RA, Kirch DL, LeFree MT (1979) Thallium-201 myocardial perfusion scintigraphy: Results of standard and multi-pinhole tomographic techniques. Am J Cardiol 43:787–793PubMedCrossRefGoogle Scholar
  445. Vogel RA (1980) Quantitative aspects of myocardial perfusion imaging. Semin Nucl Med 10:146–156PubMedCrossRefGoogle Scholar
  446. Wackers FJTh, Schoot JB van der, Busemann Sokole E, Samson G, Niftrik GJC, Lie KI, Durrer D, Wellens HJJ (1975) Noninvasive visualization of acute myocardial infarction in man with thallium-201. Br Heart J 37:741–744PubMedCrossRefGoogle Scholar
  447. Wackers FJTh, Busemann Sokole E, Samson G, Schoot JB van der, Lie KI, Liem KL, Wellens HJJ (1976) Value and limitations of thallium-201 scintigraphy in the acute phase of myocardial infarction. N Engl J Med 295:1PubMedCrossRefGoogle Scholar
  448. Wackers FJTh, Busemann Sokole E, Samson G, Schoot JB van der (1977) Atlas of Tl-201 myocardial scintigraphy. Clin Nucl Med 2:64–74Google Scholar
  449. Wackers FJTh, Becker AE, Samson G, Busemann Sokole E, Schoot JB van der, Lie KI, Durrer D, Wellens H (1977a) Location and size of acute transmural myocardial infarction estimated from thallium-201 scintiscans: a clinicopathological study. Circulation 56:72:78Google Scholar
  450. Wackers FJTh, Busemann Sokole E, Samson G, Schoot JB van der, Lie KI, Durrer D, Wellens HJJ (1977b) Thallium-201 for visualization of acute myocardial infarction in the presence of left bundle branch block. Herz 2:163–166Google Scholar
  451. Wackers FJTh, Lie KI, Busemann Sokole E, Schoot JB van der, Durrer D (1978) Prevalence of right ventricular involvement in inferior wall infarction assessed with myocardial imaging with thallium-201 and technetium-99m pyrophosphate. Am J Cardiol 42:358–362PubMedCrossRefGoogle Scholar
  452. Wackers FJTh, Sokole EB, Samson G, Schoot JB van der (1978a) Anatomy of the normal myocardial image. In: Ritchie JL, Hamilton GW, Wackers FJTh (eds) Thallium-201 myocardial imaging. Raven, New York, pp 41–53Google Scholar
  453. Wackers FJTh, Sokole EB, Samson G, Schoot JB van der (1978b) Imaging in noncoronary heart disease. In: Ritchie JL, Hamilton GW, Wackers FJTh (eds) Thallium-201 myocardial imaging. Raven, New York, pp 111–119Google Scholar
  454. Wackers FJTh, Lie KI, Liem KL, Busemann Sokole E, Samson G, Schoot JB van der, Durrer D (1979) Potential value of thallium-201 scintigraphy as a means of selecting patients for the coronary care unit. Br Heart J 41:111–117PubMedCrossRefGoogle Scholar
  455. Wackers FJTh (ed) (1980) Myocardial imaging in the coronary care unit. Nijhoff, The Hague Boston LondonGoogle Scholar
  456. Wackers FJTh (1980a) Thallium-201 myocardial imaging. In: Wackers FJTh (ed) Myocardial imaging in the coronary care unit. Nijhoff, The Hague Boston London, pp 71–104Google Scholar
  457. Wackers FJTh, Samson G (1980b) Mechanisms of thallium-201 myocardial accumulation. In: Wackers FJTh (ed) Myocardial imaging in the coronary care unit. Nijhoff, The Hague Boston LondonGoogle Scholar
  458. Wackers FJTh, Lie KI, Busemann Sokole E, Wellens HJJ, Samson G, Schoot JB van der (1980c) Thallium-201 myocardial imaging in acute myocardial infarction. In: Wackers FJTh (ed) Myocardial imaging in the coronary care unit. Nijhoff, The Hague Boston London, pp 117–160Google Scholar
  459. Wackers FJTh (1980d) Thallium-201 myocardial scintigraphy in acute myocardial infarction and ischemia. Semin Nucl Ned X:127–145CrossRefGoogle Scholar
  460. Wackers FJTh, Lie KI, Busemann Sokole E, Samson G, Schoot JB van der (1980e) Thallium-201 myocardial imaging as a selection method for the coronary care unit. In: Wacker FJTh (ed) Myocardial imaging in the coronary care unit. Nijhoff, The Hague Boston London, pp 223–235Google Scholar
  461. Wackers FJTh, Parkey RW, Bonte FJ, Willerson JT (1980f) Comparative value and limitations of thallium-201 and technetium-99m-pyrophosphate myocardial imaging in acute myocardial infarction. In: Wackers FJTh (ed) Myocardial imaging in the coronary care unit. Nijhoff, The Hague Boston London, pp 173–195Google Scholar
  462. Wackers FJTh, Busemann Sokole E, Schoot J van der, Samson G, Lewis S, Parkey RW, Willerson JT (1980g) Dual imaging in acute myocardial infarction. In: Wackers FJTh (ed) Myocardial imaging in the coronary care unit. Nijhoff, The Hague Boston London, pp 177–195Google Scholar
  463. Wackers FJTh, Willerson JT (1980h) Myocardial imaging with thallium-201 and technetium-99m-pyrophosphate in the coronary care unit: conclusion. In: Wackers FJTh (ed) Myocardial imaging in the coronary care unit. Nijhoff, The Hague Boston London, pp 241–244Google Scholar
  464. Wasserman AG, Reiss L, Katz RJ, Leiboff R, Cleary P, Varma VM, Reba RC, Ross AM (1983) Insensitivity of the cold pressor stimulation test for the diagnosis of coronary artery disease. Circulation 67:1189–1193PubMedCrossRefGoogle Scholar
  465. Waters DD, Szlachicic J, Bonan R, Miller DD, Dauwe F, Theroux P (1983) Comparative sensitivity of exercise, cold pressure and ergonovine testing in provoking attacks of variant angina in patients with active disease. Circulation 67:310–315PubMedCrossRefGoogle Scholar
  466. Watson DD, Campbell NP, Read EK, Gibson RS, Teates CD, Beller GA (1981) Spatial and temporal quantitation of plane thallium myocardial images. J Nucl Med 22:577–584PubMedGoogle Scholar
  467. Watson EE, Coffey JL (1975) Radiation dose to the liver from 201-Tl. J Nucl Med 16:1089–1090PubMedGoogle Scholar
  468. Weich H, Strauss HW, D’Agostino R, Pitt B (1977) Determination of extraction fraction by a doubletracer method. J Nucl Med 18:226–230PubMedGoogle Scholar
  469. Weich HF, Strauss W, Pitt B (1977a) The extraction of thallium-201 by the myocardium. Circulation 56:188–191Google Scholar
  470. Weiss T, Maddahi J, Lew A, Shah PK, Geft I, Swan HJC, Berman D, Banz W (1984) Reverse thallium-201 redistribution pattern in streptokinase reperfused myocardium: a sign of reestablished flow to partially viable myocardium. J Nucl Med 25: P 21 (abstr)Google Scholar
  471. Weizenberg A, Goodenday LS, Keighton RF (1983) Scintigraphic detection of ventricular aneurysm with thallium-201. J Nucl Med 24:34–35PubMedGoogle Scholar
  472. Willerson JT, Parkey RW, Buja LM, Lewis SE, Bonte FJ (1979) Detection of acute myocardial infarcts using myocardial scintigraphic techniques. In: Parkey RW, Bonte FJ, Buja LM, Wilierson FT (eds) Clinical nuclear cardiology. Appleton-Century-Crofts, New York, pp 141–186Google Scholar
  473. Willerson JT, Parkey RW, Bonte FJ, Lewis SE, Stokely E, Buja LM (1980) Technetium-99m-pyrophosphate myocardial imaging in acute myocardial infarction. In: Wackers FJTh (ed) Myocardial imaging in the coronary care unit. Nijhoff, The Hague Boston London, pp 161–172Google Scholar
  474. Williams DL, Finn RD, Campbell JA, Lagunas-Solar MC (1978) Thallium-201: physical properties and methods of production. In: Ritchie JL, Hamilton GW, Wackers FJTh (eds) Thallium-201 myocardial imaging. Raven, New York, pp 121–132Google Scholar
  475. Williams DL, Ritchie JL, Hamilton GW (1978a) Implementation of a digital image superposition algorithm for radionuclide images: an assessment of its accuracy and reproducibility. J Nucl Med 19:316–319Google Scholar
  476. Wilson RA, Okada RD, Boucher CA, Strauss HW, Pohost GM (1983) Radionuclide-determined changes in pulmonary blood volume and thallium lung uptake in patients with coronary artery disease. Am J Cardiol 51:741–748PubMedCrossRefGoogle Scholar
  477. Wilson RA, Okada RD, Strauss W, Pohost GM (1983a) Effects of glucose-insulin-potassium infusion of thallium myocardial clearance. Circulation 68:203–209CrossRefGoogle Scholar
  478. Winkler C (1981) Entwicklung und gegenwärtiger Stand der Datenverarbeitung in der klinischen Nuklearmedizin. In: Pöppl SJ, Pretschner DP (Hrsg) Systeme und Signalverarbeitung in der Nuklearmedizin. Springer, Berlin Heidelberg New York, S 1–14CrossRefGoogle Scholar
  479. Wolf R, Engel HJ, Hundeshagen H, Lichtlen P (1978) Collateral myocardial blood flow at rest and after maximal anterior dilatation in patients with ischemic heart disease. In: Kaltenbach M (ed) Coronary heart disease, 3rd Int Symp, Frankfurt 1978. Thieme, Stuttgart, p 61Google Scholar
  480. Wolf R, Pretschner P, Engel HJ, Hundeshagen H, Lichtlen PR (1979) Die Wirkung von Isosorbiddinitrat auf die belastungsinduzierte abnorme Myokardperfusion bei koronarer Herzkrankheit, objektiviert anhand der 201-Thallium-Szintigraphie. Z Kardiol 68:676–686PubMedGoogle Scholar
  481. Wolf R, Pretschner P, Engel HJ, Hundeshagen H, Lichtlen PR (1981) Effects of isosorbide dinitrate and coronary bypass surgery on the perfusion distribution and regional tracer uptake in 201-thallium stress scintigraphy. In: Lichtlen PR, Engel HJ, Schrey A, Swan HJC (eds) Nitrates III. cardiovascular effects. Springer, Berlin Heidelberg New York, pp 436–444Google Scholar
  482. Wolff HP (1981) Ist die Verfügbarkeit eines Defibrillationsgerätes bei der Ableitung eines Belastungs-Elektrokardiogrammes erforderlich? Stellungnahme des Wiss. Beirates der Bundesärztekammer. Dtsch Aerzteblatt 49:2341–2342Google Scholar
  483. Wolters E (1976) Ein datengesteuertes interaktives System für medizinische Anwendungen. Habilitationsschrift, Med Hochschule HannoverGoogle Scholar
  484. Wrenn ME, Parry Howells G, Hairr LM (1973) Auger electron dosimetry. Health Phys 24:645–653PubMedCrossRefGoogle Scholar
  485. Yasue H, Omote S, Takizawa A, Nagao M, Miwa K, Tanaka S (1979) Circadian variation of exercise capacity in patients with Prinzmetal’s variant angina: role of exercise-induced coronary arterial spasm. Circulation 59:938PubMedGoogle Scholar
  486. Yates WK (1952) Experimental location of myocardial infarction using radioisotopes. US Armed Forces Med J 3:1597Google Scholar
  487. Zaret BL (1977) Myocardial imaging with radioactive potassium and its analogs. Prog Cardiovasc Dis XX:81–94CrossRefGoogle Scholar

References

  1. Ahmad M, Logan KW, Martin RH (1978) Prognostic value of doughnut pattern Tc-99m pyrophosphate myocardial uptake in acute myocardial infarction. J Nucl Med 19:274Google Scholar
  2. Ahmed SA, Williamson JR, Roberts R, Clark RE, Sobel BE (1976) The association of increased plasma MB CPK activity and irreversible ischemic myocardial injury in the dog. Circulation 54:187–193PubMedGoogle Scholar
  3. Beller GA, Khaw B A, Haber E, Smith HW (1977) Localization of radiolabeled cardiac myosin-specific antibody in myocardial infarctions. Circulation 55:74–78PubMedGoogle Scholar
  4. Bonte FJ, Parkey RW, Graham KD, Moore JG, Stokely EM (1974) A new method for radionuclide imaging of myocardial infarcts. Radiology 110:473–474PubMedGoogle Scholar
  5. Bonte FJ, Parkey RW, Graham KD, Moore JG (1975) Distribution of several agents useful in imaging myocardial infarcts. J Nucl Med 16:132–135PubMedGoogle Scholar
  6. Botvinick EH, Shames D, Lappin H, Tyberg JV, Townsend R, Parmley WW (1975) Noninvasive quantitation of myocardial infarction with technetium-99m pyrophosphate. Circulation 52:909–915PubMedGoogle Scholar
  7. Buja LM, Parkey RW, Dees JH, Stokely EM, Harris RA Jr, Bonte FJ, Willerson JT (1975) Morphologic correlates of technetium-99m stannous pyrophosphate imaging of acute myocardial infarcts in dogs. Circulation 52:596–607PubMedGoogle Scholar
  8. Buja LM, Parkey RW, Stokely EM, Bonte FJ, Willerson JT (1976) Pathophysiology of technetium-99m stannous pyrophosphate and thallium-201 scintigraphy of canine acute myocardial infarcts. JClin Invest 57:1508CrossRefGoogle Scholar
  9. Buja LM, Poliner LR, Parkey RW, Pulido JI, Hutcheson D, Platt MR, Mills LJ, Bonte FJ, Willerson JT (1977a) Clinicopathologic study of persistently positive technetium-99m stannous pyrophosphate myocardial scintigrams and myocytolytic degeneration after acute myocardial infarction. Circulation 56:1016–1052Google Scholar
  10. Buja LM, Tofe AJ, Kulkarni PV, Mukherjee A, Parkey RW, Francis MD, Bonte FJ, Willerson JT (1977b) Sites and mechanisms of localization of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J Clin Invest 60:724–740CrossRefGoogle Scholar
  11. Carr EA Jr, Beierwaltes WH, Patne ME, Bartlett JD Jr, Wegst AV (1962) The detection of experimental myocardial infarcts by photo scanning. Am Heart J 64:650PubMedCrossRefGoogle Scholar
  12. Davis MA, Holman BL, Carmel AW (1976) Evaluation of radiopharmaceuticals sequestered by acutely damaged myocardium. J Nucl Med 17:911PubMedGoogle Scholar
  13. Davis RA, Thakur ML, Berger HJ, Walker FJ, Gottschalk A, Zaret B (1981) Imaging the inflammatory response to acute myocardial infarction in man with In-111 labeled autologous leukocytes. Circulation 63:826–832CrossRefGoogle Scholar
  14. Donsky MS, Curry GC, Parkey RW, Meyer SL, Bonte FJ, Platt MR, Willerson JT (1976) Clinical, angiographic, and myocardial scintigraphic observations. Br Heart J 38:257–263PubMedCrossRefGoogle Scholar
  15. Geltman EM, Biello D, Welch MJ, Ter-Poggossian MM, Robert R, Sobel BE (1982) Characterization of nontransmural myocardial infarction by positron-emission tomography. Circulation 65(4):747–755PubMedCrossRefGoogle Scholar
  16. Gorten RJ, Hardy LB, McCraw BH, Stokes JR, Lumb GD (1966) The selective uptake of Hg-203 chlormerodrin in experimentally produced myocardial infarcts. Am Heart J 72:71–78PubMedCrossRefGoogle Scholar
  17. Holman BL, Dewanjee MK, Idoine J, Fliegel CP, Davis MA, Treves S, Eldh P (1973) Detection and localization of experimental myocardial infarction with Tc-99m tetracycline. J Nucl Med 14:595–599PubMedGoogle Scholar
  18. Holman BL, Lesch M, Zweiman FG, Temte J, Lown B, Gorlin R (1974) Detection and sizing of acute myocardial infarcts with Tc-99m(Sn) tetracycline. N Engl J Med 291:159–163PubMedCrossRefGoogle Scholar
  19. Holman BL, Lesch M, Alpert JS (1978) Myocardial scintigraphy with technetium-99m pyrophosphate during the early phase of acute infarction. Am J Cardiol 41:39PubMedCrossRefGoogle Scholar
  20. Huber PJB (1970) Radioisotope detection of experimental myocardial infarction using mercury derivatives of fluorescein. Cardiovasc Res 4:509CrossRefGoogle Scholar
  21. Jacobstein JG, Alonso DR, Roberts AJ, Cipriano PR, Combes JR, Post MR (1977) Early diagnosis of myocardial infarction in the dog with Tc-99m glucohepatonate. J Nucl Med 18:413PubMedGoogle Scholar
  22. Jaffee AS, Klein MS, Patel BR, Siegel BA, Roberts R (1979) Abnormal technetium-99m pyrophosphate images in unstable angina: Ischemia versus infarction? Am J Cardiol 44:1035–1039CrossRefGoogle Scholar
  23. Khan BA, Beller GA, Haber E, Smith TW (1976) Localization of cardiac myosin-speciflc antibody in myocardial infarction. J Clin Invest 58:439–446CrossRefGoogle Scholar
  24. Kramer RJ, Goldstein RE, Hirshfeld JW, Roberts WC, Johnston GS, Epstein (1974) Accumulation of gallium-67 in regions of acute myocardial infarction. Am J Cardiol 33:861–867PubMedCrossRefGoogle Scholar
  25. Kulkarni PV, Parkey RW (1982) A new radioiodination method utilizing organothallium intermediate: radioiodination of phenyl pentadecanoic acid (PPA) for potential applications in myocardial imaging. J Nucl Med 23: (5) 105 (abstr)Google Scholar
  26. Malek P, Vavrejn B, Ratusky J, Kronrad L, Kolc J (1967) Detection of myocardial infarction by in vivo scanning. Cardiology 51:22CrossRefGoogle Scholar
  27. Machulla HG, Stoklin G, Kupfernagel Ch, Freundlieb Ch, Hock A, Vyska K, Feinendegen LE (1978) Comparative evaluation of fatty acids labeled with C-ll, Cl-34m, Br-77, and I-123 for metabolic studies of the myocardium. Comcise communication. J Nucl Med 19:298–302PubMedGoogle Scholar
  28. Machulla HG, Marsmann M, Dutschka K (1980) Biochemical concepts and synthesis of a radioiodinated phenylfatty acid for in vivo studies of the myocardium. Eur J Nucl Med 5:171–173PubMedCrossRefGoogle Scholar
  29. Massie BM, Botvinick EH, Werner JA, Chatterjee K, Parmley WW (1979) Myocardial scintigraphy with technetium-99m stannous pyrophosphate: An insensitive test for nontransmural myocardial infarction. Am J Cardiol 43:186PubMedCrossRefGoogle Scholar
  30. Olson HG, Lyons KD, Aronow WS, Kuperus J, Orlando J, Hughes D (1979) Prognostic value of a persistently positive technetium-99m stannous pyrophosphate myocardial scintigram after myocardial infarction. Am J Cardiol 43:889PubMedCrossRefGoogle Scholar
  31. Parkey RW, Buja LM, Kulkarni PV, Stone MJ, Willerson JT (1977) Localization of a specific 1-131 antibody to myoglobin in myocardial tissue and factors which influence myoglobin release from cardiac cells. J Nucl Med 18:611 (abstr)Google Scholar
  32. Parkey RW, Bonte FJ, Meyer SL, Atkins JM, Wilierson JT, Curry GC (1974) A new method for radionuclide imaging of acute myocardial infarction in humans. Circulation 50:540PubMedGoogle Scholar
  33. Parkey RW, Bonte FJ, Buja LM, Willerson JT (eds) (1979) Clinical Nuclear Cardiology. Appleton-Century-Crofts, New YorkGoogle Scholar
  34. Parkey RW, Kulkarni PV, Lewis SE, Datz FL, Dehmer GJ, Gutekunst DP, Buja LM, Bonte FJ, Willerson JT (1981a) Effect of coronary blood flow and site of injection on Tc-99m PPi detection of early canine myocardial infarcts. J Nucl Med 22:133–137Google Scholar
  35. Parkey RW, Lewis SE, Bonte FJ, Buja LM, Willerson JT (1981b) Nuclear cardiology and the diabetic patient. In: Scott R (ed) Clinical cardiology and diabetes. Futura Publishing, Kisco NYGoogle Scholar
  36. Platt MR, Parkey RW, Willerson JT, Bonte FJ, Shapiro W, Sugg WL (1976) Technetium stannous pyrophosphate myocardial scintigrams in the recognition of myocardial infarction in patients undergoing coronary artery revascularization. Ann Thorac Surg 21:311PubMedCrossRefGoogle Scholar
  37. Poe ND, Robinson GD Jr, Grahams L, MacDonald NS (1976) Experimental basis for myocardial imaging with 123I-labeled hexadecenoic acid. J Nucl Med 17:1077–1082PubMedGoogle Scholar
  38. Poe ND, Robinson GD Jr, Zielinski FW, Cabeen WR, Smith JW, Gomes AS (1977) Myocardial imaging with 123I-hexadecenoic acid. Radiology 124:419–424PubMedGoogle Scholar
  39. Poliner LR, Buja LM, Parkey RW, Stokely EM, Stone MJ, Harris R, Saffer SW, Templeton GH, Bonte FJ, Willerson JT (1977) Comparison of different noninvasive methods of infarct sizing during experimental myocardial infarction. J Nucl Med 18:517PubMedGoogle Scholar
  40. Poliner LR, Buja LM, Parkey RW, Bonte FJ, Willerson JT (1979) Clinicopathological studies in 52 patients studied with technetium-99m stannous pyrophosphate myocardial scintigraphy. Circulation 59:257PubMedGoogle Scholar
  41. Pugh B, Platt MR, Mills LJ, Crumbo D, Poliner LR, Curry GC, Blomqvist GC, Parkey RW, Buja LM, Willerson JT (1978) Unstable angina pectoris: A randomized study of patients trated medically and surgically. Am J Cardiol 41:1291–1298PubMedCrossRefGoogle Scholar
  42. Pulido JI, Parkey RW, Lewis SE, Buja LM, Bonte FJ, Dehmer G, Stone MJ, Willerson JT (1980) Acute subendocardial myocardial infarction: Its detection by Tc-99m stannous pyrophosphate myocardial scintigraphy. Clin Nucl Med 5:191PubMedCrossRefGoogle Scholar
  43. Righetti A, Crawford MH, O’Rourke RA, Hardason T, Schelbert H, Daily PO, DeLuca M, Ashburn W, Ross J Jr (1977a) Detection of perioperative myocardial damage after coronary bypass graft surgery. Circulation 55:1973Google Scholar
  44. Righetti A, O’Rourke RA, Schelbert H, Henning H, Hardason T, Dailo PO, Ashburn W, Ross J Jr (1977b) Usefulness of preoperative and postoperative Tc-99m (Sn) pyrophosphate scans in patients with ischemic and valvular heart disease. Am J Cardiol 39:43CrossRefGoogle Scholar
  45. Roberts R, Gowda KS, Ludbrook PA, Sobel BE (1975) Specificity of elevated serum MB creatine phosphokinase activity in the diagnosis of acute myocardial infarction. Am J Cardiol 36:433–437PubMedCrossRefGoogle Scholar
  46. Rude RE, Parkey RW, Bonte FJ, Lewis SE, Twieg DT, Buja LM, Willerson JT (1979) Clinical implications of the technetium-99m-stannous pyrophosphate myocardial scintigraphic “doughnut” patterns in patients with acute myocardial infarcts. Circulation 59:721PubMedGoogle Scholar
  47. Stokely EM, Buja LM, Lewis SE, Parkey RW, Bonte FJ, Harris RA Jr, Willerson JT (1976) Measurement of acute myocardial infarcts in dogs with Tc-99m stannous pyrophosphate scintigrams. J Nucl Med 17:1PubMedGoogle Scholar
  48. Stone MJ, Waterman MR, Murray G, Harimoto D, Platt MR, Blomqvist G, Willerson JT (1977) The serum myoglobin level as a diagnostic test in patients with acute myocardial infarction. Br Heart J 38:375–380CrossRefGoogle Scholar
  49. Thakur ML, Gottschalk A, Zaret B (1979) Imaging of experimental myocardial infarcts with In-111 labeled autologous leukocytes: Effect of infarct age and residual regional myocardial blood flow. Circulation 60:297–305PubMedGoogle Scholar
  50. Wackers FJTh, Sokole EB, Samson G, Schoot JB van der, Lie KI, Liem KL, Wellen HJJ (1976) Value and limitations of thallium-201 scintigraphy in the acute phase of myocardial infarct. N Engl J Med 295:1PubMedCrossRefGoogle Scholar
  51. Wackers FJTh, Sokole EB, Schoot JB van der (1977a) Atlas of 2O1T1 myocardial scintigraphy. Clin Nucl Med 2:64Google Scholar
  52. Wackers FJTh, Becker AE, Samson G, Sokole EB, Schoot JB van der, Vet AJTM, Lie KI, Durrer D, Wellens H (1977b) Location and size of acute transmural myocardial infarction estimated from thallium-201 scintiscans: A clinicopathological study. Circulation 56:72Google Scholar
  53. Willerson JT, Parkey RW, Bonte FJ, Meyer SL, Stokely EM (1975a) Acute subendocardial myocardial infarction in patients: Its detection by technetium-99m stannous pyrophosphate. Circulation 51:436–441Google Scholar
  54. Willerson JT, Parkey RW, Bonte FJ, Atkins JM, Stokely EM (1975b) Technetium stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology. Circulation 51:1046–1052Google Scholar
  55. Willerson JT, Parkey RW, Stokely EM, Bonte FJ, Lewis SE, Harris RA, Blomqvist G, Poliner LR, Buja LM (1977a) Infarct sizing with technetium-99m stannous pyrophosphate scintigraphy in dogs and man: The relationship between scintigraphic and precordial mapping estimates of infarct size in patients. Cardiovasc Res 11:291CrossRefGoogle Scholar
  56. Willerson JT, Stone MJ, Ting R, Mukherjee A, Gomez-Sanchez CE, Lewis P, Hersh LB (1977b) Radioimmunoassay of creatine kinase-β-isoenzyme in human sera: Results in patients with acute myocardial infarction. Proc Natl Acad Sci USA 74(4):1711–1715CrossRefGoogle Scholar
  57. Willerson JT, Kulkarni PV, Stone M, Lewis SE, Eigenbrodt E, Bonte FJ, Parkey RW, Buja LM (1980) Localization of anti-mitochondrial antibody in experimental canine myocardial infarcts. Proc Natl Acad Sci USA 77(11):6856–6859PubMedCrossRefGoogle Scholar
  58. Zweiman FG, Holman BL, O’Keefe A, Idoine J (1975) Selective uptake of Tc-99m complexes and Ga-67 in acutely infarcted myocardium. J Nucl Med 16:975–979PubMedGoogle Scholar

References

  1. Alazraki NP, Ashburn WL, Hagan A (1972) Detection of left-to-right cardiac shunts with the scintillation camera pulmonary dilution curve. J Nucl Med 13:142PubMedGoogle Scholar
  2. Alderson PO, Jost RG, Strauss HW (1975) Radionuclide angiocardiography: Improved diagnosis and quantification of left-to-right shunts using area ratio techniques in children. Circulation 51:1136PubMedGoogle Scholar
  3. Alderson PO, Douglass KH, Mendenhall KG (1979) Deconvolution analysis in radionuclide quantitation of left-to-right shunts. J Nucl Med 20:502–506PubMedGoogle Scholar
  4. Ashburn WL (1974) Radionuclide imaging techniques in the evaluation of heart disease. In: Zoneraich S (ed) Noninvasive methods in cardiology. Thomas, Springfield/Ill, p 446Google Scholar
  5. Askenazi J, Ahnberg DS, Korngold E (1976) Quantitative radionuclide angiocardiography: Detection and quantitation of left-to-right shunts. Am J Cardiol 37:382PubMedCrossRefGoogle Scholar
  6. Blau M, Zielinski R, Bender M (1966) 137m-Ba Cow — a new short-lived isotope generator. Nucleonics 24:60Google Scholar
  7. Blumgart HL, Yens OC (1927) Studies on the velocity of blood flow. I. The method utilized. J Clin Invest 4:1PubMedCrossRefGoogle Scholar
  8. Bosnjakovic B, Bennet L, Vincent W (1971) Diagnosis of intracardiac shunts without cardiac catheterization Circulation 44:11–144Google Scholar
  9. Boucher CA, Ahluwalia B, Block PC (1977) Inhalation imaging with oxygen-15 labeled carbon dioxide for detection and quantitation of left-to-right shunts. Circulation 56:632PubMedGoogle Scholar
  10. Braunwald E, Goldblatt A, Long RT (1959) Injections of radioactive krypton (Kr-58) solution in the detection and localization of cardiac shunts. J Clin Invest 38:990Google Scholar
  11. Cheng C, Treves S, Samuel A (1980) A new osmium-191 iridium-191m generator. J Nucl Med 21:1169PubMedGoogle Scholar
  12. Donato L (1973) Basic concepts of radiocardiography. Semin Nucl Med 3:111PubMedCrossRefGoogle Scholar
  13. Dymond DS, Elliot AT, Flatman W (1982) First-pass radionuclide angiography in man using Gold-195m (t½ = 30.5 seconds) (abstr). J Nucl Med 23:71Google Scholar
  14. Fazio F, Gerundini P, Mashi A (1982) First-pass angiocardiography using Au-195m (abstr) J Nucl Med 23:71Google Scholar
  15. Freedman GS, Dwyer A, Wolberg J (1976) Radionuclide determination of cardiac chamber flow/volume characteristics. J Nucl Med 17:84PubMedGoogle Scholar
  16. Gates GF, Orme HW, Dore EK (1971) Measurement of cardiac shunting with technetium-labeled albumin aggregates. J Nucl Med 12:746PubMedGoogle Scholar
  17. Gates GF, Orme HW, Dore EK (1973) Cardiac surgery in cyanotic children assessed by Tc-99m-macroaggregated albumin (MAA). J Nucl Med 14:398Google Scholar
  18. Gates GF, Orme HW, Dore EK (1975) Surgical systemic-pulmonic shunts assessed by radionuclide scintiscanning. J Nucl Med 16:529Google Scholar
  19. Ham HR, Dobbelair A, Viart R (1981) Radionuclide quantitation of left-to-right cardiac shunts using deconvolution analysis. J Nucl Med 22:688–692PubMedGoogle Scholar
  20. Haroutunian LM, Neill CA, Wagner HN (1969) Radioisotope scanning of the lung in cyanotic congenital heart disease. Am J Cardiol 23:387PubMedCrossRefGoogle Scholar
  21. Haroutunian LM, Neill CA, Wagner HN (1974) Preoperative and postoperative assessment of congenital heart disease. In: James AE, Wagner HN, Cooke RE (eds) Pediatric nuclear medicine. Saunders, Philadelphia, p 265Google Scholar
  22. Heyman S (1979) Toxicity and safety factors associated with lung perfusion studies with radiolabeled particles. J Nucl Med 20:1098PubMedGoogle Scholar
  23. Hurley PJ, Pouluse KP, Wagner HN (1969) Radionuclide angiocardiography for detecting right-to-left intracardiac shunts. J Nucl Med 10:433Google Scholar
  24. Jones T, Clark JC (1979) A cyclotron produced 81-Rb-81m-Kr generator and its use in gamma camera studies. Br J Radiol 42:237Google Scholar
  25. Kennady JC, Taplin GV (1965) Albumin macroaggregates for brain scanning: Experimental basis and safety in primates. J Nucl Med 6:566PubMedGoogle Scholar
  26. Kennady JC, Taplin GV (1966) Safety of measuring regional cerebrocortical blood flow with radioalbumin macroaggregates. J Nucl Med 7:345Google Scholar
  27. Kurtz D, Ahnberg DS, Freed M (1976) Quantitative radionuclide angiocardiography: Determination of left ventricular ejection fraction in children. Br Heart J 38:966PubMedCrossRefGoogle Scholar
  28. Kuruc A, Treves S, Parker JA (1983) An improved deconvolution technique for correcting radionuclide angiocardiography for suboptimal bolus injection: Experimental results in dogs with and without atrial septal defects. Radiology 148:233–238PubMedGoogle Scholar
  29. Lin CY (1971) Lung scan in cardiopulmonary disease. I. Tetralogy of fallot. J Thorac Cardiovasc Surg 61:1126Google Scholar
  30. Long RT, Braunwald E, Morrow AG (1960) Intracardial injection of radioactive krypton; clinical applications of new methods for characterization of circulatory shunts. Circulation 21:1126PubMedGoogle Scholar
  31. Maltz DL, Treves S (1973) Quantitative radionuclide angiocardiography: Determination of Qp:Qs in children. Circulation 47:1049PubMedGoogle Scholar
  32. Parker JA, Treves S (1977) Radionuclide detection, localization, and quantitation of intracardiac shunts and shunts between the great arteries. Prog Cardiovasc Dis 20:121PubMedCrossRefGoogle Scholar
  33. Parker JA, Secker-Walker RH, Hill RL (1972) A new technique for the calculation of left ventricular ejection fraction. J Nucl Med 13:649PubMedGoogle Scholar
  34. Prinzmetal M, Corday E, Bergman HC (1948) Radiocardiography: A new method for studying the blood flow through the chambers of the heart in human beings. Science 108:340PubMedCrossRefGoogle Scholar
  35. Spach MS, Canent RV, Boineau JP (1965) Radioisotope dilution curves as an adjunct to cardiac catheterization. II. Right-to-left shunts. Am J Cardiol 16:176PubMedCrossRefGoogle Scholar
  36. Starmer CF, Clark DO (1970) Computer computations of cardiac output using the gamma function. J Appl Physiol 28:219PubMedGoogle Scholar
  37. Strauss HW, Hurley PJ, Rhodes B A (1969) Quantification of right-to-left transpulmonary shunts in man. J Lab Clin Med 74:579Google Scholar
  38. Tamer DM, Watson DD, Kenny PJ (1977) Noninvasive detection and quantification of left-to-right shunts in children using oxygen-15 labeled carbon dioxide. Circulation 56:626PubMedGoogle Scholar
  39. Thompson HK, Starmer CF, Whalen RE (1964) Indicator transit time considered as a gamma variate. Circ Res 14:502PubMedGoogle Scholar
  40. Treves S (1980) Detection and quantitation of cardiovascular shunts with commonly available radionuclides. Semin Nucl Med 10:16PubMedCrossRefGoogle Scholar
  41. Treves S, Collins-Nakai RL (1976) Radioactive tracers in congenital heart disease. Am J Cardiol 38:711PubMedCrossRefGoogle Scholar
  42. Treves S, Collins-Nakai RL, Ahnberg DS (1976) Quantitative radionuclide angiocardiography (RAC) in premature infants with patent ductus arteriosus (PDA) and respiratory distress syndrome (RDS). J Nucl Med 17:554Google Scholar
  43. Treves S, Cheng C, Samuel A (1980a) Iridium-191m angiocardiography for the detection and quantitation of left-to-right shunting. J Nucl Med 21:1151Google Scholar
  44. Treves S, Royal H, Babchyck B (1980b) Pediatric nuclear cardiology. In: Engel ME (ed) Pediatric cardiovascular disease, vol 12., p 247Google Scholar
  45. Watson DD (1980) Shunt detection with the shortlived radioactive gases. Semin Nucl Med 10:27PubMedCrossRefGoogle Scholar
  46. Weber PM, DosRemedios LV, Jasko IA (1972) Quantitative radioisotopic angiocardiography. J Nucl Med 13:815PubMedGoogle Scholar
  47. Wesselhoeft J, Hurley PJ, Wagner HN (1971) Nuclear angiocardiography in the differential diagnosis of congenital heart disease in infants. J Nucl Med 12:406Google Scholar
  48. Yano Y, Budinger TF, Chee P (1976) Evaluation of rubidium-82 generators for imaging studies. J Nucl Med 17:536Google Scholar

Literatur

  1. Ahlström H, Westling H (1971) Prolonged measurement of 133Xenon disappearance from subcutaneous tissue of the foot. Scand J Clin Lab Invest 28:401–407PubMedCrossRefGoogle Scholar
  2. Alexander K, Fabel H, Feuerhake I, Hundeshagen H, Pixberg HU (1968) Die simultane Bestimmung zentraler Kreislaufgrößen und der peripheren Durchblutung nach gleichzeitiger Applikation von 133Xe und 131J-RIHSA. In: Hoffmann G (Hrsg) Radionuklide in Kreislaufforschung und Kreislaufdiagnostik. Schattauer, Stuttgart New York, 39–43Google Scholar
  3. Alexander K, Fabel H, Hundeshagen H, Feuerhake I (1969) Experimentelle Untersuchungen zur Korrelation von Kreislauf- und Stoffwechselgrößen beim Gliedmaßenarterienverschluß des Menschen. Arch Kreislaufforsch 60:261–310PubMedCrossRefGoogle Scholar
  4. Alexander K, Wittenborg A, Fabel H, Feuerhake I, Hundeshagen H (1970) Simultane Bestimmung von Kreislauf- und Stoffwechselgrößen unter ergometrischer Belastung bei arterieller Verschlußkrankheit. In: Ehringer H, Deutsch E (Hrsg) Durchblutungsstörungen. Schattauer, Stuttgart New York, S 193–199Google Scholar
  5. Alexander K, Wittenborg A, Tägder K, Hundeshagen H, Fabel H, Liegmann B (1971) Quantitative Durchblutungsmessungen mit Hilfe von 133Xe. Dtsch Med Wochenschr 96:1711–1716PubMedCrossRefGoogle Scholar
  6. Alexander K, Wittenborg A, Liegmann B, Hundeshagen H, Fabel H, Tägder K (1972) Über die Therapie des chronischen Extremitätenarterien-Verschlusses mit ergometrischer Belastung und simultaner intraarterieller Applikation energiereicher Phosphate. Vasa 1:113–119PubMedGoogle Scholar
  7. Alexander K, Nissen P, Maass U, Hundeshagen H, Sippel R (1975) Auswirkung einseitiger ergometrischer Belastung des Beines auf Hämodynamik und Stoffwechsel bei arterieller Verschlußkrankheit. In: Bollinger A, Grüntzi A (Hrsg) Ergometrie und Ergotherapie bei arteriellen Durchblutungsstörungen. Huber, Bern Stuttgart Wien, S 72–78Google Scholar
  8. Alexander K, Maass U, Nissen P (1980) Pathophysiologische Grundlagen der Trainingsbehandlung. In: Müller-Wiefel H, Barras JP, Ehringer H, Krüger M (Hrsg) Mikrozirkulation und Blutrheologie. Therapie der peripheren arteriellen Verschlußkrankheit. Witzstrock, Baden-Baden Köln New York, S 145–149Google Scholar
  9. Alpert JS, Coffman JD (1969) Effect of intravenous epinephrine on skeletal muscle, skin, and subcutaneous blood flow. Am J Physiol 216:156–160PubMedGoogle Scholar
  10. Alpert J, Garcia del Rio H, Lassen NA (1966) Diagnostic use of radioactive Xenon Clearance and a standardized walking test in obliterative arterial disease of the legs. Circulation 34:849–855PubMedGoogle Scholar
  11. Alpert J, Andree Larsen O, Lassen NA (1967) Blood flow in the calf muscles during walking: effect of daily muscular exercise in patients with occlusive arterial disease. Scand J Clin Lab Invest [Suppl 100] 19:90Google Scholar
  12. Alpert JS, Andree Larsen O, Lassen NA (1968) Evaluation of arterial insufficiency of the legs. A comparison of arteriography and the 133Xe walking test. Cardiovasc Res 2:161–169PubMedCrossRefGoogle Scholar
  13. Alpert JS, Andree Larsen O, Lassen NA (1969) Exercise and intermittend claudication. Blood flow in the calf muscle during walking studied by the Xenon-133 Clearance method. Circulation 39:353–359PubMedGoogle Scholar
  14. Amery A, Bossaert H, Verstraete M, de Roo M (1969) Muscle blood flow in normal subjects and in patients with intermittent claudication of the legs. Acta Cardiol (Brux) 24:170–183Google Scholar
  15. Amery A, Bossaert H, Deruyttiere M, Vanderlinden L, Verstraete M (1973) Influence of body posture on leg blood flow. Angiologia 10:152–163Google Scholar
  16. Amiel M, Jandot V, Barbe R, Mikaeloff P, Etienne-Martin M (1972) Notre expérience de la mesure du débit musculaire au xénon radioactif. Ann Radiol (Paris) 15:453–461Google Scholar
  17. Andersen AM, Ladefoged J (1965) Relationship between hematocrit and solubility of 133Xe in blood. JPharm Sci 54:1684CrossRefGoogle Scholar
  18. Angelides N, Nicolaides A, Needham T, Dudley H (1978) The mechanism of calf claudication : studies of simultaneous clearance of 99Tcm from the calf and thigh. Br J Surg 65:204–209PubMedCrossRefGoogle Scholar
  19. Appleberg M, Lewis JD (1975) Evaluation of aortoiliac disease with doppler ultrasound and isotope clearance techniques. Sth Afr Med J 49:1744–1746Google Scholar
  20. Balldin UI, Lundgren CEG, Lundvall J, Mellander S (1971) Changes in the elimination of 133Xenon from the anterior tibial muscle in man induced by immersion in water and by shifts in body postion. Aerospace Medicine 42:489–493PubMedGoogle Scholar
  21. Barány F (1965) Abnormal vascular reactions in diabetes mellitus. Acta Med Scand [Suppl 304]Google Scholar
  22. Barcroft H, Briggs M, Gimlette TMD, Nasrallah A (1967) Validity of the 133Xenon method for determination of muscle blood flow in man as evaluated by simultaneous venous occlusion plethysmography during intravenous infusions of adrenaline. Cardiovasc Res 1:229–232CrossRefGoogle Scholar
  23. Bardfeld PA, Lopez-Majano V, Wagner HN (1967) Measurement of the regional distribution of arterial blood flow in the human forearm and hand. J Nucl Med 8:542–550PubMedGoogle Scholar
  24. Barlow TE, Haigh AL, Walder DN (1961) Evidence for two vascular pathways in skeletal muscle. Clin Sci 20:367–385PubMedGoogle Scholar
  25. Barnes RW (1979) Noninvasive diagnostic techniques in peripheral vascular disease. Am Heart J 97:241–258PubMedCrossRefGoogle Scholar
  26. Barron JN, Veall N (1952) Application of radioactive sodium to problems in plastic surgery. Br Med Bull 8:197PubMedGoogle Scholar
  27. Baumann JC (1975) Klinisch experimentelle Untersuchungen mit Pentoxifyllin an durchblutungsgestörten und gesunden Extremitäten. Durchblutungsmessungen mit der Xenon133-Muskel-Clear-ance, Ultraschall Doppler-Technik und Rheographie. Med Welt 26:2103–2106PubMedGoogle Scholar
  28. Bell G, Short DW (1968) The measurement of blood flow through muscle from the clearance of radioactive Xenon. Surg Gynecol Obstet 127:61–65PubMedGoogle Scholar
  29. Bell G, Short DW (1971) Effect of thrombendarterectomy upon muscle blood flow as measured by the clearance of 133Xenon. Surgery 70:649–655PubMedGoogle Scholar
  30. Bell G, Short DW (1972) Muscle blood-flow following insertion of a by-pass vein-graft in femoropopliteal occlusive disease. Br J Surg 59:429–432PubMedCrossRefGoogle Scholar
  31. Bellman S, Kövamees A (1967) Isotope clearance studies in peripheral vascular reconstruction. J Carciovasc Surg 8:390–395Google Scholar
  32. Benedetti-Valentini F, Gossetti B, Massa R, Gizzi E, Fiorani P (1978) Xenon-133 muscular flow measurements in surgery for arterial disease of the lower limbs. Int Surg 63:41–45PubMedGoogle Scholar
  33. Bergan JJ, Yao JST, Henkin RE, Quinn JL (1974) Radionuclide aortography in detection of arterial aneurysms. Arch Surg 109:80–83PubMedCrossRefGoogle Scholar
  34. Bernier R, Paquet E, Gosselin C (1974) Etude de la circulation périphérique par méthode isotopique avant et aprés sympathectomie lombaire. Union Med Can 103:898–902PubMedGoogle Scholar
  35. Besse P, Bricaud H, Bourdier J, Blanquet P (1967) L’emploi des isotopes dans L’#x00E9;tude de la circulation art#x00E9;rielle des membres inf#x00E9;rieurs. Cœur Med Interne 6:127–136PubMedGoogle Scholar
  36. Blümchen G, Nagel F, Buchwalsky R, Harnasch P, Barmeyer J, Schlosser V, Schnitzer H, Hoffmann G (1973) Die Reproduzierbarkeit der Xenon133-Muskel-Clearance-Methode. Basic Res Cardiol 68:80–95PubMedCrossRefGoogle Scholar
  37. Blumgart HL, Yens OC (1927) Studies on the velocity of blood flow. J Clin Invest 4:1–13PubMedCrossRefGoogle Scholar
  38. Bohr H (1967) Measurement of the blood flow in the skin with radioactive Xenon. Scand J Clin Lab Invest [Suppl 99] 19:60–61Google Scholar
  39. Bonde-Petersen F, Siggaard-Andersen J (1974) Physical performance capacity in patients with dysbasia arteriosclerotica. Scand J Rehabil Med 6:31–35PubMedGoogle Scholar
  40. Brecht T, Hedde JP, Felix R, Trübestein G, Winkler C (1977) Medikamentöse Beeinflussung der Perfusionsverteilung in der terminalen Strombahn bei arterieller Durchblutungsstörung der oberen Extremität. Szintigraphische Untersuchungen unter Einbeziehung eines Doppel-Radio-Nuklidverfahrens. Verh Dtsch Ges inn Med 83:1753–1755PubMedGoogle Scholar
  41. Breuel HP, Emrich D (1979) Kardiologie und Angiologie. In: Emrich D (Hrsg) Nuklearmedizin Funktionsdiagnostik und Therapie. Thieme, Stuttgart, 224–255Google Scholar
  42. Broomé A, Cederlund J, Eklöf B (1967a) Spontaneous Recovery in intermittent claudication. Scand J Clin Lab Invest [Suppl 99] 19:157–159Google Scholar
  43. Broomé A, Cederlund J, Eklöf B (1967b) The effect of nicotinic acid on muscle blood flow in intermittent claudication measured with Xenon-133 Clearance method. Scand J Clin Lab Invest [Suppl 99] 19:233–240Google Scholar
  44. Buchwalsky R, Schmiedle M, Blümchen G, Schnellbacher K, Roskamm H, Reindell H (1973) Meßbare Trainingseffekte mit der Xenon-133. Muskelclearance. In: Zeitler E (Hrsg) Diagnostik mit Isotopen bei arteriellen und venösen Durchblutungsstörungen der Extremitäten. Huber, Bern Stuttgart Wien, 74–78Google Scholar
  45. Bülow J, Madsen J (1975) Compensation for geometric changes during monitoring of 133Xe washout from subcutaneous adipose tissue. Scand J Clin Lab Invest 35:641–644PubMedGoogle Scholar
  46. Burgess EM, Matsen FA (1981) Determining amputation levels in peripheral vascular disease. J Bone Joint Surg 63/A:1493–1497Google Scholar
  47. Carr MJT, Crooks JA, Griffiths PA, Hopkinson BR (1977) Capillary blood flow in ischemie limbs before and after surgery assessed by subcuticular injection of Xenon 133. Am J Surg 133:584–586PubMedCrossRefGoogle Scholar
  48. Carson SN, Hunter G, Wong HN, Farrer PA (1980) Dynamic isotope aortoiliac assessment. Arch Surg 115:859–862PubMedCrossRefGoogle Scholar
  49. Chapuis Y, Comet M (1974) L’angiographie isotopique en pathologie artérielle périphérique. Nouv Presse Med 3:2745PubMedGoogle Scholar
  50. Chapuis Y, Cornet M, Roucayrol JC, Leger L (1975) L’angiographie isotopique en pathologie artérielle périphérique. Nouv Presse Med 4:1189–1193PubMedGoogle Scholar
  51. Chidsey CA, Fritts HW, Hardewig A, Richards DW, Cournand A (1959) Fate of radioactive krypton (Kr85) introduced intravenously in man. J Appl Physiol 14:63–66PubMedGoogle Scholar
  52. Christensen NJ (1968) The significance of work load and injected volume in Xenon133 measurement of muscular blood flow. Acta Med Scand 183:445–447PubMedCrossRefGoogle Scholar
  53. Christenson J, Larsson I, Svensson SE, Westlin H (1977) Distribution of intravenously injected 201Thalium in the legs during walking. Eur J Nucl Med 2:85–88PubMedCrossRefGoogle Scholar
  54. Clausen JP, Lassen NA (1971) Muscle blood flow during exercise in normal man studied by the 133Xenon clearance method. Cardiovasc Res 5:245–254PubMedCrossRefGoogle Scholar
  55. Clements IP, Strelow DA, Becker GP, Vlietstra RE, Brown ML (1981) Radionuclide evaluation of peripheral circulatory dynamics : New clinical application of blood pool scintigraphy for measuring limb venous volume, capacity, and blood flow. Am Heart J 102:980–983PubMedCrossRefGoogle Scholar
  56. Clyne CAC, Jones T, Moss S, Ensell J (1979) The use of radioactive oxygen to study muscle function in peripheral vascular disease. Surg Gynecol Obstet 149:225–228PubMedGoogle Scholar
  57. Coffman JD (1963) Effects of intra-arterial and intravenous epinephrine on Disappearance of Na131 from calf muscle and on calf blood flow. Circ Res 13:56–63PubMedGoogle Scholar
  58. Coffman JD (1970) Skin blood flow in scleroderma. J Lab Clin Med 76:480–484PubMedGoogle Scholar
  59. Coffman JD, Mannick JA (1965) A simple, objective test for arteriosclerosis obliterans. N Engl J Med 273:1297–1301PubMedCrossRefGoogle Scholar
  60. Coffman JD, Cohen AS (1971) Total and capillary fingertip blood flow in raynaud’s phenomenon. N Engl J Med 285:259–263PubMedCrossRefGoogle Scholar
  61. Colemont L, Decoutere P (1981) The in vivo determination of the blood volume in the foot using a mercury strain gauge plethysmograph and I-131 labelled serum albumin. Cardiovasc Res 15:262–267PubMedCrossRefGoogle Scholar
  62. Conn HL (1961) Equilibrium distribution of radioxenon in tissue: xenonhemoglobin association curve. J Appl Physiol 16:1065–1070PubMedGoogle Scholar
  63. Cooper FW, Elkin DC, Shea PC, Dennis EW (1949) The study of peripheral vascular disease with radioactive isotopes. Surg Gynecol Obstet 88:711–718PubMedGoogle Scholar
  64. Corman LA, Flickinger FW, Sokoloff J, Nodine JH (1970) Radioactive xenon tissue clearance: standardization for measurement of peripheral blood flow. J Nucl Med 11:233–238PubMedGoogle Scholar
  65. Corovic D (1975) Quantitative Bestimmung der Muskeldurchblutung mit der 133Xenon-Clearance-Methode. Vergleich mit verschiedenen qualitativen Untersuchungsverfahren zur Diagnostik und zur Kontrolle der operativen Behandlung von chronischen Durchblutungsstörungen der unteren Extremitäten. Habilitationsschrift, GötingenGoogle Scholar
  66. Correns HJ, Völkner E, Unverricht A (1969) Eine erweiterte Methode zur Bestimmung der peripheren Durchblutungsstörung mit der Gewebsclearance. Radiobiol Radioter 10:793–797Google Scholar
  67. Crawley JCW, Lewis JD, Percival HG, Zammittabona M (1977) Simultaneous thigh and calf muscle blood flows during free exercise, using a radioactive xenon injection technique in man. J Physiol (Lond)267:33P-34PGoogle Scholar
  68. Creutzig A, Luska G, Creutzig H, Alexander K (1982) Verlaufskontrolle nach perkutaner transluminaler Rekanalisation peripherer Gefäße mit der Gefäß-Szintigraphie. Vasa 11:316–318PubMedGoogle Scholar
  69. Creutzig A, Creutzig H, Wagner HH, Alexander K (1983) Digital peripheral radionuclide angiography as a follow-up technique of percutaneous transluminal angioplasty. Int Angiol 2:173–177Google Scholar
  70. Creutzig H, Creutzig A, Luska G, Schober O, Knoop B (1981) Digitale Szintigraphie der peripheren Gefäße — ein diagnostischer Gewinn? Der Nuklearmediziner 4:245–253Google Scholar
  71. Cutajar CL, Marston A (1970) Muscle blood-flow studies in patients with intermittent claudication by the technetium (99mTc) Clearance Technique. Br J Surg 57:390PubMedGoogle Scholar
  72. Cuypers Y, Merchie G (1962) Etude de la circulation sanguine periphérique au moyen de la serumalbumine humaine marquée à L133I. Acta Cardiol 17:117–132PubMedGoogle Scholar
  73. Dahn I, Lassen NA, Westling H (1967a) On the mechanism of delayed hyperaemia in the calf muscles in obliterative arterial disease. Cardiovasc Res 1:145–149CrossRefGoogle Scholar
  74. Dahn I, Lassen NA, Westling H (1967b) Blood flow in human muscles during external pressure or venous stasis. Clin Sci 32:467–473Google Scholar
  75. Dahn I, Ekman CA, Lassen NA, Nilsen R, Westling H (1967c) On the conservative treatment of severe ischemia of the leg. Scand J Clin Lab Invest [Suppl 99] 19:160–165Google Scholar
  76. Daly MJ, Henry RE (1980) Quantitative Measurement of skin perfusion with Xenon-133. J Nucl Med 21:156–160PubMedGoogle Scholar
  77. Davies WT (1980) Blood flow measurement in patients with intermittent claudication. Angiology 31:164–175PubMedCrossRefGoogle Scholar
  78. Davis HH, Siegel BA, Joist JH, Heaton WA, Mathias CJ, Shermann LA, Welch MJ (1978) Scintigraphic detection of atherosclerotic lesions and venous thrombin in man by indium-111-labelled autologous platelets. Lancet 1:1185–1187PubMedCrossRefGoogle Scholar
  79. Davis HH, Siegel BA, Sherman LA, Heaton WA, Naidich TP, Joist JH, Welch M (1980) Scintigraphic detection of carotid atherosclerosis with indium-111-labeled autologous platelets. Circulation 61:982–988PubMedGoogle Scholar
  80. Dechevez C, Barzin J, Barzin JP (1977) Explorations isotopiques dans l’étude des affections artériques. J Belge Méd Phys 32:130–135PubMedGoogle Scholar
  81. Delaney JP (1982) The use of radionuclides in the study of limb blood flow. In: Bernstein EF (ed) Noninvasive diagnostic techniques in vascular disease. St Louis Toronto London, p 148–158Google Scholar
  82. Denaro JA, Weinstein G, Imparato AM, Braunstein P (1975) Evaluation of peripheral vascular disease using radioactive Xenon. Rev Surg 32:65–67PubMedGoogle Scholar
  83. Derezic D, Ivancevic D, Custovic F (1980) The blood flow in the muscles of upper and lower extremities in patients with a chronic occlusive arterial disease, measured by the Xenon-133 Clearance technique. Acta Med Jugosl 34:279–287Google Scholar
  84. Dibos PE, Muhletaler CA, Natarajan TK, Wagner HN (1972) Intravenous radionuclide arteriography in peripheral occlusive arterial disease. Radiology 102:181–183PubMedGoogle Scholar
  85. Domstad PA, Choy YC, Kim EE, DeLand FH (1981) Functional alterations of muscle perfusion in Type II muscle atrophy: demonstration by lower extremity perfusion scans. J Nucl Med 6:39–41Google Scholar
  86. Edlich RF, Grotenhuis I, Buchin RJ (1968) Radioactive microspheres. Effect of their physical properties on vascular distribution. Proc Soc Exp Biol Med 128:909–913PubMedGoogle Scholar
  87. Eickhoff JH (1980) Forefoot vascoconstrictor response to increased venous pressure in normal subjects and in arteriosclerotic patients. Acta Chir Scand 502:7–14Google Scholar
  88. Elkin DC, Cooper FW, Rohrer RH, Miller WB, Shea PC, Dennis EW (1948) The study of peripheral vascular disease with radioactive isotopes, part 1. Surg Gynecol Obstet 87:1–8PubMedGoogle Scholar
  89. Enjalbert A (1977) L’exploration artérielle par le xénon 133. Acta Chir Belg 76:55–59PubMedGoogle Scholar
  90. Enjalbert A (1979) Effect of lumbar sympathectomy on the muscles. J Cardiovasc Surg (Torino) 20:295–300Google Scholar
  91. Ernst D, Hurlow RA, Strachan CJL, Chandler ST (1978) The assessment of digital vessel disease by dynamic hand scanning. Hand 10:217–225PubMedCrossRefGoogle Scholar
  92. Fabre J, Puel P, Boccalon H, Guiraud R (1978) A new technique for studying muscular hyperemia using cenon-133-results obteined in normal and arteriosclerotic subjects. J Nucl Med 5:113–116Google Scholar
  93. Fares CM, Milliken JC (1974) The effect of parenteral indoramin on peripheral blood flow in patients with Raynaud’ disease or atherosclerosis associated with intermittent claudication. Curr Med Res Opin 2:57–62PubMedCrossRefGoogle Scholar
  94. Fares CM, Milliken JC, Beckett VL (1976) Digital skin capillary flow of xenon-133 in rheumatoid arthritis. Ir J Med Sci 145:217–222PubMedCrossRefGoogle Scholar
  95. Farrer PA, Kloiber R (1979) Combined superior vena cava and pulmonary artery obstruction by an ascending aortic aneurysm. Clin Nucl Med 4:495–497PubMedGoogle Scholar
  96. Fee HJ, Friedman BH, Siegel ME (1977) The Selection of an amputation level with radioactive microspheres. Surg Gynecol Obstet 144:89–90Google Scholar
  97. Flesh LH, Kihm RH, Ciccio SS (1977) Radionuclide Imaging of aortic involvement in Buerger’ disease: case report. J Nucl Med 18:125–127PubMedGoogle Scholar
  98. Fox MJ, Milliken JC (1972) A new atraumatic isotope-labelling technique for the assessment of digital cutaneous blood-flow. Br J Surg 59:312PubMedGoogle Scholar
  99. Freeman LM, Mindelzun R (1968) Diagnosis of aortic aneurysm with radionuclide angiography. Am J Surg 116:433–436PubMedCrossRefGoogle Scholar
  100. Gabriel R, Möri H (1971) Die Muskelgewebsclearance mit 133Xenon. Z Kreislaufforsch 60:269–277Google Scholar
  101. Galus K (1969) Usefullness of the measurement of the muscle blood flow in the extremities using 133Xe. Polish Medical Journal 8:1069–1077PubMedGoogle Scholar
  102. Garcia del Rio H (1967) The blood flow in calf muscles in normal man and in patients with obliterative arterial disease studied during walking by the Xe-133 clearance method. Scand J Clin Lab Invest [Suppl 99] 19:130–132Google Scholar
  103. Garcia del Rio H, Welsh PA, Repetto R (1969) The Xenon133 local clearance method for evaluation of direct reconstructive arterial surgery in obstructive arterial disease of the limb. J Cardiovasc Surg (Torino) 10:239–245Google Scholar
  104. Gardner TJ, Greyson ND, Rhodes BA, Williams GM (1972) The clinical usefullness of leg scanning with radioactive microspheres in arterial insufficiency. Surg Forum 23:247–249PubMedGoogle Scholar
  105. Giargiana FA, Siegel ME, James AE (1973) A preliminary report on the complementary roles of arteriography and perfusion scanning in assessment of peripheral vascular disease. Radiology 108:619–627PubMedGoogle Scholar
  106. Gosselin RE (1966) Local effects of catecholamines on radioiodide clearance in skeletal muscle. Am J Physiol 210:885–892PubMedGoogle Scholar
  107. Grimby G, Häggendal E, Saltin B (1967) Local xenon 133 clearance from the quadriceps muscle during exercise in man. J Appl Physiol 22:305–310PubMedGoogle Scholar
  108. Gyurko G, Lengyel L, Kovacs L (1976) 133Xenon-Clerance bei peripheren Gefäßkrankheiten. Acta Chir Acad Sci Hung 17:203–208PubMedGoogle Scholar
  109. Halawa B, Rog-Malinowski M, Milewicz A (1969) Effects of treatment with radon waters in swieradow spa on tissue blood flow determined by means of radioactive Xenon. Bull Polish Med Sci Hist 12:185–186Google Scholar
  110. Hansen TI, Kristensen JH (1973) Effect of massage shortwave diathermy and ultrasound upon 133Xe disappearance rate from muscle and subcutaneous tissue in the human calf. Scan J Rehabil Med 5:179–182Google Scholar
  111. Harris R, Martin HJ, Williams HS (1952) Correlation of skin temperature and circulatory changes in muscle and subcutaneous tissue of the hand during trunk heating. Clin Sci 11:429PubMedGoogle Scholar
  112. Hebestreit HP, Schlicht L, Lütgemeier J, Grajales R, Klinke JD (1972) Ergebnisse der Muskeldurchblutung mittels der Xenon-133-Clearance nach individuell dosierter ischämischer Arbeit bei Gesunden sowie bei Patienten vor und nach Gefäßoperation. Fortschr Roentgenstr 117:141–150PubMedCrossRefGoogle Scholar
  113. Heidenreich P, Fischer M, Kempken K, Pabst HW, Scherer HJ (1973) Die intravenöse Perfusionsserienszintigraphie bei peripheren arteriellen Gefäßverschlüssen. Fortschr Roentgenstr 119:545–556PubMedCrossRefGoogle Scholar
  114. Heiander E (1959) Fat content of skeletal muscular tissue. Acta Morphol Need Scand 2:230–254Google Scholar
  115. Held K, Schreier A (1974a) Die 133-Xenon Clearance der Armmuskulatur. Klin Wochenschr 52:728–735CrossRefGoogle Scholar
  116. Held K, Schreier A (1974b) Durchblutungsstörungen der oberen Extremität — Messungen mit der 133Xenon-Clearance. Z Kardiol 63:1110–1119Google Scholar
  117. Hengst W, Kaltenbach M (1968) Vergleichende Untersuchungen über positive und negative Arbeit mittels der Xenon-Clearance. Z Kreislaufforsch 57:825–831PubMedGoogle Scholar
  118. Henninges D, Mentes B, Giessler R, Köhle M, Schoop W, Zeitler E (1973) Nuklearmedizinische Untersuchungen an den Beinen im Stadium III und IV der arteriellen Verschlußkrankheit. Fortschr Roentgenstr [Suppl] 256–257Google Scholar
  119. Henriksen O (1974) Orthostatic changes of blood flow in subcutaneous tissue in patients with arterial insufficiency of the legs. Scand J Clin Lab Invest 34:103–109PubMedCrossRefGoogle Scholar
  120. Henriksen O, Nielsen SL, Paaske WP (1973a) Autoregulation of blood flow in human adipose tissue. Acta Physiol Scand 89:531–537CrossRefGoogle Scholar
  121. Henriksen O, Nielsen SL, Paaske WP, Sejrsen P (1973b) Autoregulation of blood flow in human cutaneous tissue. Acta Physiol Scand 89:538–543CrossRefGoogle Scholar
  122. Henry RE, Malone JM, Daly MJ, Hughes JH, Moore WS (1982) Skin perfusion measurement: the normal range, the effects of ambient temperature and its clinical application. In: Raynaud C (ed) Nuclear medicine and biology. Pergamon Press, Paris Oxford New York Toronto Sydney Frankfurt, p 420–422Google Scholar
  123. Hentzer E (1967a) Conservative treatment of gangrene and impending gangrene by “Heart Chair”. Scand J Clin Lab Invest [Suppl 99] 19:166–167Google Scholar
  124. Hentzer E (1967b) Treatment of peripheral arterial insufficiency with inositoli nicotinas (Hexanicit®). Scand J Clin Lab Invest [Suppl 99] 19:226–232Google Scholar
  125. Hinsenkamp M, d’Hollander A, Coussaert E, Rasquin C, Schoutens A (1980) Measurement of blood flow in peripheral muscles using Xe133. Angiology 31:58–65PubMedCrossRefGoogle Scholar
  126. Hirai M (1974a) Muscle blood flow measured by Xe-133 Clearance method and peripheral vascular diseases. Jpn Circ J 38:655–659CrossRefGoogle Scholar