Skip to main content

A Review of the Theory

  • Conference paper
Basic Principles and Applications

Part of the book series: Topics in Boundary Element Research ((TBOU,volume 1))

  • 213 Accesses

Abstract

The modern theory of boundary integral equations began with Fredholm [1], who established the existence of solutions on the basis of his limiting discretisation procedure. It was not envisaged by Fredholm or his immediate successors that solutions could actually be constructed in this way. However the advent of fast digital computers, some 50 years later, opened up the possibility of implementing the discretisation process arithmetically and so enabled numerical solutions of tolerable accuracy to be attempted. This possibility in turn gave a considerable impetus to the development of new and improved boundary integral formulations. In 1962, Hess and Smith [2, 3] formulated a Fredholm integral equation of the second kind for the distribution of simple sources over a surface of revolution. By solving this equation numerically, they were able to compute the perturbation of a uniform potential flow by the surface. In 1963, Jaswon and Ponter [4] threw the torsion problem on to the boundary by formulating an integral equation of the second kind for the warping function, which was solved numerically as a means of computing the torsional rigidity and boundary shear stress for cross-sections inaccessible to other methods of attack. This was one of the first published papers which effectively exploited Green’s formula on the boundary, by emphasising its role as a functional relation between the boundary values and normal derivatives of an arbitrary harmonic function. Also in 1963, Jaswon [5] formulated the electrostatic capacitance problem in terms of a Fredholm integral equation of the first kind for the charge distribution, a formulation which had been noted and discarded by Volterra [6] because of apparent difficulties with the two-dimensional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fredholm, I., Sur une classe d’equations fonctionelles. Acta Math. 27, 365–390 (1903)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hess, J. L., Smith, A. M. O., Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. Report No. E. S. 40622, Douglas Aircraft Co., Long Beach 1962

    Google Scholar 

  3. Hess, J. L., Smith, A. M. O., Calculation of potential flow about arbitrary bodies. In: Progress in Aeronautical Sciences, Vol 8. ( D. Kuchemann, Ed.). Pergamon Press, London 1967

    Google Scholar 

  4. Jaswon, M. A., Ponter, A. R. S., An integral equation solution of the torsion problem. Proc. Roy. Soc. A, 273, 237–246 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jaswon, M. A., Integral equation methods in potential theory, I, Proc. Roy. Soc., A, 275, 23–32 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  6. Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations. Dover, New York 1959

    MATH  Google Scholar 

  7. Symm, G. T., Integral equation methods in potential theory, II. Proc. Roy. Soc., A, 275, 33–46 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  8. Symm, G. T., External thermal resistance of buried cables and troughs. Proc. I.E.E.E., 116 (10), 1695–1698 (1969)

    Google Scholar 

  9. Symm, G. T., Computation of potential in a multiwise proportional counter of arbitrary cross-section. Nucl. Instrum. Methods, 118, 605–607 (1974)

    Article  Google Scholar 

  10. Symm, G. T., Capacitance of coaxial lines with steps and tapers. In: Recent Advances in B.E.M, Proc. Is’ Int. Conf. B.E.M., Southampton Univ., ( C. A. Brebbia, Ed.). Pentech Press, London 1978

    Google Scholar 

  11. Symm, G. T., An integral equation method in conformal mapping. Num. Math., 9, 250–258 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  12. Symm, G. T., Numerical mapping of exterior domains. Num. Math., 10, 437–445 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  13. Symm, G. T., Conformal mapping of doubly-connected domains. Num. Math., 13, 448–457 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  14. Papamichael, N., Whiteman, J. R., A numerical conformal transformation method for harmonic mixed boundary value problems in polynomial domains. J. App. Math. Phys. (ZAMP), 24, 304–316 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gaier, D., Integralgleichungen erster Art and konforme Abbildung. Math. Zeit., 147, 113–129 (1976)

    MATH  MathSciNet  Google Scholar 

  16. Hough, D. M., Papamichael, N., An integral equation method for the numerical conformal mapping of interior, exterior and doubly connected domains. Num. Math. (in the press)

    Google Scholar 

  17. Jaswon, M. A., Maitit, M., Symm, G. T., Numerical biharmonic analysis and some applications. Int. J. Solids Structures, 3, 309–332 (1967)

    MATH  Google Scholar 

  18. Jaswon, M. A., Maiti, M., An integral equation formulation of plate bending problems. J. Eng. Math., 2 (1), 83–93 (1968)

    Article  MATH  Google Scholar 

  19. Rizzo, F. J., An integral equation approach to boundary value problems of classical elastostatics. Quart App. Math., 25 (1), 83–95 (1967)

    MATH  Google Scholar 

  20. Jaswon, M. A., Some theoretical aspects of boundary integral equations. Appl. Math. Modell., 5, 409–413 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kupradze, V. D., Potential Methods in the Theory of Elasticity. Israel Program for Scientific Translations. Jerusalem 1965

    MATH  Google Scholar 

  22. Jaswon, M. A., Symm, G. T., Integral Equation Methods in Potential Theory and Elastostatics. Academic Press, London 1977

    MATH  Google Scholar 

  23. Rizzo, F. J., Shippy, D. J., A Method for Stress Determination in Plane Anisotropic Elastic Bodies. J. Composite Materials, 4, 36–60 (1970)

    Article  Google Scholar 

  24. Vogel, S. M., Rizzo, F. J., An integral equation formulation of three dimensional anisotropic elastostatic boundary value problems. J. Elast. 3 (3), 203–216 (1973)

    Article  Google Scholar 

  25. Cruse, T. A., Numerical solutions in three dimensional elastostatics. Int. J. of Solids Structures 5, 1259–1274 (1969)

    Article  MATH  Google Scholar 

  26. Cruse, T. A., An application of the boundary-integral equation method to three-dimensional stress analysis. Computers & Structures 3, 509–527 (1973)

    Article  Google Scholar 

  27. Cruse, T. A., An improved boundary-integral equation method for three-dimensional elastic stress analysis. Computers & Structures 4, 741–754 (1974)

    Article  Google Scholar 

  28. Brebbia, C. A., The Boundary Element Method for Engineers. Pentech Press, London 1978

    Google Scholar 

  29. Brebbia, C. A., Walker, S., Boundary Element Techniques in Engineering. Butterworth 1979

    Google Scholar 

  30. Brebbia, C. A. (Ed.), Recent Advances in B.E.M. Proc. Is’ Int. Conf. B.E.M. Southampton Univ., Pentech Press, London 1978

    Google Scholar 

  31. Brebbia, C. A. (Ed.), New Developments in B.E.M., Proc. 2 nd Int. Conf. B.E.M. C.M.L Publications, Southampton 1980

    Google Scholar 

  32. Brebbia, S. A. (Ed.), B.E.M., Proc. 3r d Int. Seminar. Irvingm California. C.M.L. Publications, Springer 1981

    Google Scholar 

  33. Zinkiewicz, O. K., Marriage Ă  la Mode-Finite Element and Boundary Integral Method. In: International Symposium on Innovative Numerical Analysis in Applied Engineering Science, Versailles. CETIM Publications, Paris 1977

    Google Scholar 

  34. Brebbia, C. A., Georgiou, P., Combination of boundary and finite elements in elastostatics. App. Math. Modell. 3, 213–220 (1978)

    Google Scholar 

  35. Wendland, W. L., On applications and the convergence of boundary integral methods. In: Treatment of Integral Equations by Numerical Methods, ( C. T. Baker & G. F. Miller, Eds.). Proc. Durham Symposium, Academic Press 1982

    Google Scholar 

  36. Kellogg, O. D., Foundations of Potential Theory. Springer 1929

    Google Scholar 

  37. Petrovsky, I. G., Lectures on Theory of Integral Equations. M.I.R., Moscow 1971

    MATH  Google Scholar 

  38. Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity. Cambridge 1927

    MATH  Google Scholar 

  39. Bhattacharyya, P. K., Symm, G. T., A novel formulation and solution of the plane elastostatic displacement problem. J. Comp. Math. App. 6, 443–448 (1982)

    Article  MathSciNet  Google Scholar 

  40. Bhattacharyya, P. K, Symm, G. T., A new formulation and solution of the plane elastostatic traction problem. Appl. Math. Modell (in the press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Jaswon, M.A. (1984). A Review of the Theory. In: Brebbia, C.A. (eds) Basic Principles and Applications. Topics in Boundary Element Research, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82215-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82215-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82217-9

  • Online ISBN: 978-3-642-82215-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics