Skip to main content

Introduction

  • Chapter
  • 180 Accesses

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 5))

Abstract

Any apparatus which facilitates the exchange of heat between two fluids may be classified as a heat exchanger. The diversity of the applications in which heat exchanging apparatus are utilised covers an extensive range of equipment/ varying in technological sophistication and size from domestic radiators and refrigerators, through aircraft and motor vehicle engines, to chemical processing plant. As a consequence, many different forms of heat exchangers have been developed. These are usually categorised as either recuperators or regenerators depending upon the process by which the heat exchange between the two heat transfer fluids is achieved. In recuperators the two heat transfer fluids simultaneously flow across the opposing surfaces of a solid interface, and the heat exchange occurs through this interface. A typical example is the radiator used in water cooled internal combustion engines? this device effects the transfer of heat from water circulating within its interior to air streaming across its exterior. Thus, recuperative heat exchangers facilitate a continuous exchange of heat. In contrast, in regenerators the heat transfer process is of a periodic nature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Harper and W.B. Brown, “Mathematical equations for heat conduction in the fins of air-cooled engines”, National Advisory Committee for Aeronautics, Report 158, 1922.

    Google Scholar 

  2. D.Q. Kern and A.D. Kraus, Extended surface heat transfer, McGraw-Hill, New York, 1972.

    Google Scholar 

  3. A. J. Chapman, Heat transfer, Macmillan, New York, 1974.

    Google Scholar 

  4. F. Kreith, Principles of heat transfer, Harper and Row, New York, 1976.

    Google Scholar 

  5. W.G. Murray, “Heat dissipation through an aunnular disk or fin of uniform thickness”, Journal of Applied Mechanics, Vol. 60, pp. A78–A80, 1938.

    Google Scholar 

  6. K.A. Gardner, “Efficiency of extended surface”, Transactions of the ASME, Vol. 67, pp. 621–631, 1945.

    Google Scholar 

  7. A. Brown, “Optimum dimensions of uniform annular fins”, International Journal of Heat and Mass Transfer, Vol. 8, pp. 655–662, 1965.

    Article  Google Scholar 

  8. P.J. Smith and J. Sucec, “Efficiency of circular fins of triangular profile”, Journal of Heat Transfer, Vo. 91, pp. 181–182. 1969.

    Article  Google Scholar 

  9. S. Guceri and C.J. Maday, “A least weight circular cooling fin”, Journal of Engineering for Industry, Vol. 97, pp. 1190–1193, 1975.

    Article  Google Scholar 

  10. I. Mikk, “Convective fin of minimum mass”, International Journal of Heat and Mass Transfer, Vol. 23, pp. 707–711, 1981.

    Article  Google Scholar 

  11. E.M. Sparrow and R.D. Cess, Radiation heat transfer, Brooks-Cole Publishing Company, Belmont, California, 1970.

    Google Scholar 

  12. R. Siegel and J.R. Howell, Thermal radiation heat transfer, McGraw-Hill, New York, 1972.

    Google Scholar 

  13. P. J. Heggs, D.B. Ingham and M. Manzoor, “The one-dimensional analysis of fin assembly heat transfer”, submitted to Journal of Heat Transfer, 1981.

    Google Scholar 

  14. A. Aziz and S.M. Enamul-Huq, “Perturbation solution for convecting fin with variable thermal conductivity”, Journal of Heat Transfer, Vol. 97, pp. 300–301, 1975.

    Article  Google Scholar 

  15. A. Muzzio, “Approximate solution for convective fins with variable thermal conductivity”, Journal of Heat Transfer, Vol. 98, pp. 680– 682, 1976.

    Article  ADS  Google Scholar 

  16. P. Razelos and K. Imre, “The optimum dimensions of circular fins with variable thermal parameters”, Journal of Heat Transfer, Vol. 102, pp. 420–425, 1980.

    Article  Google Scholar 

  17. A. Aziz and T.Y. Na, “Periodic heat transfer in fins with variable thermal parameters”, International Journal of Heat and Mass Transfer, Vol. 24, pp. 1397–1404, 1981.

    Article  MATH  ADS  Google Scholar 

  18. P.W. Wong, “Mass and heat transfer from circular finned cylinders”, Journal of the Institution of Heating and Ventilating Engineers, Vol. 23, pp. 1–23, 1963.

    Google Scholar 

  19. J.W. Stachiewicz, “Effect of variation of local film coefficient on fin performance”, Journal of Heat Transfer, Vol. 91, pp. 21–26, 1969.

    Article  Google Scholar 

  20. V.F. Yudin and L.C. Tokhtorova, “Investigation of the correction factor Ψ for the theoretical effectiveness of a round fin”, Thermal Engineering, Vol. 20, pp. 66–68, 1973.

    Google Scholar 

  21. P.J. Heggs and P.R. Stones, “Improyed design method for finned tube heat exchangers”, Transactions of the Institution of Chemical Engineers, Vol. 58, pp. 147–154, 1980.

    Google Scholar 

  22. L.S. Han and S.G. Lefkowitz, ASME Paper 60-WA-41, 1960.

    Google Scholar 

  23. P.G. Barnett, “The influence of wall thickness, thermal conductivity and method of heat input on the heat transfer performance of some ribbed surfaces”, International Journal of Heat and Mass Transfer, 1972.

    Google Scholar 

  24. P.J. Heggs, D.B. Ingham and M. Manzoor, “The effects of non-uniform heat transfer from an annular fin of triangular profile”, Journal of Heat Transfer, Vol. 103, pp. 184–185, 1981.

    Article  Google Scholar 

  25. R.K. Irey, “Errors in the one-dimensional fin solution”, Journal of Heat Transfer, Vol. 90, pp. 175–176, 1968.

    Google Scholar 

  26. M. Levitsky, “The criterion for validity of the fin approximation”, International Journal of Heat and Mass Transfer, Vol. 15, pp. 1960–1963, 1972.

    Article  Google Scholar 

  27. W. Lau and C.W. Tan, “Errors in one-dimensional heat transfer analysis in straight and annular fins”. Journal of Heat Transfer, Vol. 95, pp. 549–551, 1973.

    Article  Google Scholar 

  28. E.M. Sparrow and D.K. Hennecke, “Temperature depression at the base of a fin”, Journal of Heat Transfer, Vol. 92, pp. 204–206, 1970.

    Article  Google Scholar 

  29. E.M. Sparrow and L. Lee, “Effects of fin-base temperature depression in a multifin array”, Journal of Heat Transfer, Vol. 97, pp. 463–465, 1975.

    Article  ADS  Google Scholar 

  30. N.V. Suryanarayana, “Two-dimensional effects on heat transfer from an array of straight fins”, Journal of Heat Transfer, Vol. 99, p.p. 129–132, 1977.

    Article  Google Scholar 

  31. P.J. Heggs and P.R. Stones, “The effects of dimensions on the heat flowrate through extended surfaces”, Journal of Heat Transfer, Vol. 102, pp. 180–182, 1980.

    Article  Google Scholar 

  32. P.R. Stones, Ph.D. Thesis, University of Leeds, 1980.

    Google Scholar 

  33. D.B. Ingham, P.J. Heggs and M. Manzoor, “The numerical solution of plane potential problems by improved boundary integral equation methods”, Journal of Computational Physics, Vol. 42, pp 77–98, 1981.

    Article  MATH  ADS  Google Scholar 

  34. D.B. Ingham, P.J. Heggs and M. Manzoor, “Boundary integral equation analysis of transmission line singularities”, IEEE Transactions on Microwave Theory and Techniques, Vol. 29, pp. 1240– 1243, 1981.

    Article  ADS  Google Scholar 

  35. P.J. Heggs, D.B. Ingham and M. Manzoor, “Boundary integral equation analysis of fin assembly heat transfer”, to appear in Numerical Heat Transfer.

    Google Scholar 

  36. P.J. Heggs, D.B. Ingham and M. Manzoor, “The analysis of fin assembly heat transfer by a series truncation method”, to appear in Journal of Heat Transfer.

    Google Scholar 

  37. D.B. Ingham, P.J. Heggs and M. Manzoor, “The two-dimensional analysis of fin assembly heat transfer: A comparison of solution techniques”, to appear in the Proceedings of the Second National Symposium on Numerical Methods in Heat Transfer, Hemisphere, Washington DC, 1982.

    Google Scholar 

  38. R.L. Chambers and E.V. Somers, “Radiation fin efficiency for one-dimensional heat flow in a circumar fin”, Journal of Heat Transfer, Vol. 81, pp. 327–329, 1959.

    Google Scholar 

  39. J.G. Bartas and W.H. Sellers, “Radiation fin effectiveness”, Journal of Heat Transfer, Vol. 82, pp. 73–75, 1960.

    Google Scholar 

  40. R. C. Donovan and W.M. Rohrer, “Radiative and convecting fins on a plane wall including mutual irradiation”, Journal of Heat Transfer, Vol. 93, pp. 41–46, 1971.

    Article  Google Scholar 

  41. M.N. Schnurr, “Radiation from an array of longitudinal fins of triangular profile”, AIAA Journal, Vol. 13, pp. 691–693, 1975.

    Article  ADS  Google Scholar 

  42. R.G. Eslinger and B.T.F. Chung, “Periodic heat transfer in radiating and convecting fins or fin arrays”, AIAA Journal, Vol. 17, pp. 1134–1140, 1979.

    Article  ADS  Google Scholar 

  43. G.T. Symm, “Treatment of singularities in the solution of Laplace’s equation by an integral equation method”, National Physical Laboratory, Report NAC31, 1973.

    Google Scholar 

  44. W.A. Bell, W.L. Meyer and B.T. Zinn, “Predicting the acoustics of arbitrarily shaped bodies using an integral equation approach”, AIAA Journal, Vol. 15, pp. 813–820, 1977.

    Article  MATH  ADS  Google Scholar 

  45. Y.S. Wu, F.J. Rizzo, D.J. Shippy and J.A. Wagner, “An advanced boundary integral equation method for two-dimensional electromagnetic field problems”, Electric Machines and Electromechanics, Vol. 1, pp 303–313, 1977.

    Google Scholar 

  46. D.L. Clements and F.J. Rizzo, “A method for the numerical solution of boundary value problems governed by second-order elliptic equations”. Journal of the Institute of Mathematics and its Applications, Vol. 22, pp. 197–202, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  47. E. Alarcon, C. Brebbia and J. Dominguez, “The boundary element method in elasticity”, International Journal of Mechanical Science, Vol. 20, pp. 625–639, 1978.

    Article  MATH  Google Scholar 

  48. C.A. Brabbia, Boundary element methods for engineering, Pentech Press, London, 1980.

    Google Scholar 

  49. C.A. Brebbia and S. Walker, Boundary element techniques in engineering, Butterworths, London, 1980.

    MATH  Google Scholar 

  50. C.A. Brebbia, Progress in boundary element methods, Volume 1, Pentech Press, London, 1981.

    MATH  Google Scholar 

  51. D.B. Ingham, P.J. Heggs and M. Manzoor, “The boundary integral equation solution of non-linear plane potential problems”, to appear in the Institute of Mathematics and Its Aplications Journal of Numerical Analysis.

    Google Scholar 

  52. D.B. Ingham, P.J. Heggs and M. Manzoor, “Improved formulations for the analysis of convecting and radiating finned surfaces”, to appear in AIAA Journal.

    Google Scholar 

  53. K.A. Gardner and T.C. Carnovos, “Thermal-contact resistance in finned tubing”, Journal of Heat Transfer, Vol.82, pp.279–284, 1960.

    Google Scholar 

  54. E.H. Young and D.E. Briggs, “Bond resistance of bimetallic finned tubes”, Chemical Engineering Progress, Vol. 61, pp.71–76, 1965.

    Google Scholar 

  55. M.V. Kulkarni and E.H. Young, “Bimetallic finned tubes”, Chemical Engineering Progress, Vol.62, pp.69–74, 1966.

    Google Scholar 

  56. P.J. Heggs, D.B. Ingham and M. Manzoor, “The effects of surface roughness on the performance of extended surface heat exchangers”, submitted to Journal of Heat Transfer, 1981.

    Google Scholar 

  57. P.J. Heggs, D.B. Ingham and M. Manzoor, “The effects of interfacial bonding on the performance of extended surface heat exchangers”, submitted to Journal of Engineering for Industry, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manzoor, M. (1984). Introduction. In: Heat Flow Through Extended Surface Heat Exchangers. Lecture Notes in Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82191-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82191-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13047-5

  • Online ISBN: 978-3-642-82191-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics