Skip to main content

Summary

The development and use of the upper bound approach (UBA) are surveyed to indicate on what bases it stands, to what purposes it has been applied and how it has adapted itself to changing technological requirements and advancing computational facilities. The state of the art of and the problems set on UBA are then summarized. Finally the unique parts which UBA should play to continue useful in the future age of the finite element method are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

f :

friction factor defined by f = τ f /k

k, k f :

flow stresses of workpiece material in simple shear and compression resp.

k fm :

mean of k f within workpiece

m :

strain-rate hardening exponent

SC :

work-tool interface

SD*:

assumed internal surface of velocity discontinuity

ST, SV :

workpiece surfaces where tractions and particle velocities are specified resp.

Ti :

vector component of specified traction

V :

workpiece volume

Vi :

vector component of specified tool velocity

V i , \({\dot V_i}\) :

vector components of actual velocity and acceleration of workpiece particle

V * i , V * t :

kinematically admissible velocity component and tangential velocity discontinuity resp.

V n , V n :

normal components to SC of tool velocity and workpiece particle velocity resp.

\({\dot W_C}*\) :

upper bound to total rate of work being done by tool over SC

\({\dot W_d},\,{\dot W_f}\) :

calculated rates of work due to plastic deformation and frictional sliding resp.

\({\dot W_s},\,{\dot W_t}\) :

calculated rates of work due to internal shearing and traction resp.

X i :

i-th axis of Eulerian co-ordinate system

\(\bar \dot \varepsilon *,\;\dot \varepsilon _{ij}^*\) :

kinematically admissible equivalent strain-rate and component of strain-rate tensor resp.

\(\int {d\bar \varepsilon}\) :

actual equivalent strain = \(\int {\bar \dot \varepsilon \,dt}\)

\(\bar \dot \varepsilon _m^*\) :

average of \(\bar \dot \varepsilon *\) within workpiece

θ:

current temperature of workpiece particle

μ:

coefficient of friction

ρ:

density of workpiece material

\(\bar \sigma\) :

equivalent stress due to von Mises

τ f :

frictional stress

List of references

  1. Gvozdev, A.A., see I.J.M.S. 1 (1960), p. 322

    Google Scholar 

  2. Hill, R.: On the State of Stress in a Plastic-Rigid Body at the Yield Point, Phil. Mag. 42 (1951), p. 868

    MATH  Google Scholar 

  3. Green, A.P.: A Theoretical Investigation of the Compression of a Ductile Material between Smooth Flat Dies, ibid., p. 900

    Google Scholar 

  4. Green, A.P.: Calculations on the Theory of Sheet Drawing, BISRA Report MW/B/7/52 (1952)

    Google Scholar 

  5. Shield, R. T.; Drucker, D. C.: The Application of Limit Analysis to Punch-Indentation Problems, Tr. A.S.M.E., J. Appl. Mech. 20 (1953), p. 453

    MATH  Google Scholar 

  6. Shield, R.T.: The Plastic Indentation of a Layer by a Flat Punch, Quart. J. Appl. Math. 13 (1955), p. 27

    MATH  MathSciNet  Google Scholar 

  7. Levin, E.: Indentation Pressures of a Smooth Circular Punch, ibid., p. 133

    Google Scholar 

  8. Hill, R.: New Horizons in the Mechanics of Solids, J. Mech. Phys. Solids 5 (1956), p. 66

    Article  MATH  MathSciNet  Google Scholar 

  9. Kudo, H.: An Analysis of Plastic Compressive Deformation of Lamella between Rough Plates by Energy Method, Proc. 5. Japan Nat. Congr. Appl. Mech. (1955), p. 75

    Google Scholar 

  10. Hill, R.: The Mathematical Theory of Plasticity, Oxford Clarendon Press (1950)

    Google Scholar 

  11. Kudo, H.: A Computation of Required Pressure for Extrusion-Forging Circular Shells, Proc. 7. Japan Jat. Congr. Appl. Mech. (1957), p. 57

    Google Scholar 

  12. Kudo, H.: An Upper Bound Approach to Plane-Strain Forging and Extrusion — I & II, Report Aeron. Res. Inst., Tokyo Univ. 1 (1958), p. 37 [J]; I.J.M.S. 1 (1960), p. 57; p. 229

    Google Scholar 

  13. Johnson, W.: Over-Estimates of Load for Some Two-Dimensional Forging Operations, Proc. 3. U.S. Nat. Congr. Appl. Mech. (1958), p. 571

    Google Scholar 

  14. Johnson, W.: Estimation of Upper Bound Loads for Extrusion and Coining Operations, Proc. I.M.E. 173 (1959), p. 61

    Article  Google Scholar 

  15. Johnson, W.: An Elementary Consideration of Some Extrusion Defects, Appl. Sci. Res., Sect. A 8 (1959), p. 52

    Article  Google Scholar 

  16. Johnson, W.: Cavity Formation and Enfolding Defects in Plane-Strain Extrusions Using a Shaped Punch, ibid., p. 228

    Google Scholar 

  17. Kudo, H.: Some Analytical and Experimental Studies of Axi-symmetric Cold Forging and Extrusion — I, Report Aeron. Res. Inst.. Tokyo Univ. 1 (1958), p. 212 [J]; I.J.M.S. 2 (1960), p. 102

    Google Scholar 

  18. Kudo, H.: An Upper Bound Approach to a Simple Axisymmetric Closed-Die Forging, Proc. 10. Japan Nat. Congr. Appl. Mech. (1960), p. 145

    Google Scholar 

  19. Kudo, H.: An Upper-Bound Approach to Plane-Strain Forging and Extrusion — III, Report Aeron. Res. Inst., Tokyo Univ., 1 (1958), p. 131 [J]; I.J.M.S. 1 (1960), p. 366

    Google Scholar 

  20. Kudo, H.: Some Analytical and Experimental Studies of Axisymmetric Cold Forging and Extrusion — II, Report Aeron. Res. Inst., Tokyo Univ. 1 (1959), p. 247 J; I.J.M.S. 3 (1961), p. 91

    Google Scholar 

  21. Tanner, R.I.; Johnson, W.: Temperature Distributions in Some Fast Metal-Working Operations, I.J.M.S. 1 (1960), p. 28

    Google Scholar 

  22. Johnson, W.; Kudo, H.: The Use of Upper Bound Solutions for the Determination of Temperature Distributions in Fast Hot Rolling and Axisymmetric Extrusion Processes, ibid., p. 175

    Google Scholar 

  23. Tarnovskii, I. Ya.; Pozdeev, A.A.; Ganago, O.A.: Deformatsii i Usiliya pri Obrabotke Metallov Davleniem, Mashinostr. Literatury, Moskva (1959) [R]

    Google Scholar 

  24. Avitzur, B.; Yang, C.T.: Analysis of Power Spinning of Cones, Tr. A.S.M.E., Ser. B 82 (1960), p. 231

    Google Scholar 

  25. Yamada, Y.: Yield-Point Load of Rigid-Plastic Body — I, Kikai-no-Kenkyu, Tokyo 10 (1958), p. 621 [J]

    Google Scholar 

  26. Shindo, A.: General Consideration on the Compression of a Wedge by Rigid Flat Die — I, Tr. J.S.M.E. 27 (1961), p. 447 [J]; Bull. J.S.M.E. 5 (1962), p. 21

    Google Scholar 

  27. Kudo, H.; Takahashi, H.: On Some Complete Solutions for Steady State Extrusion in Plane Strain, J. J.S.T.P. 5 (1964) p. 237; p. 464 [J]

    Google Scholar 

  28. Stepanskii, L.G.: O Granitsakh Ochaga Plastitseskoi Deformatsii pri Vydavlivanii, Best. Mashinostr., 43 (1963), p. 59 [R]

    Google Scholar 

  29. Avitzur, B.: Analysis of Wire Drawing and Extrusion Conical Dies of Small Cone Angle, Tr. A.S.M.E. Ser. 85 (1963), p. 89

    Google Scholar 

  30. Avitzur, B.: Analysis of Metal Extrusion, Tr. A.S.M.E., Ser. B 87 (1965), p. 57

    Google Scholar 

  31. Hailing, J.; Mitchell, L.A.: An Upper Bound Solution for Axisymmetric Extrusion, I.J.M.S. 7 (1965), p. 277

    Google Scholar 

  32. Adie, J. F.; Alexander, J. M.: A Graphical Method of Obtaining Hodographs for Upper-Bound Solutions to Axisymmetric Problems, I.J.M.S. 9 (1967), p. 349

    MATH  Google Scholar 

  33. Lambert, E.R.; Kobayashi, S.: Admissible Velocity Fields for some Steady-State Forming Processes in Plane-Strain and Axisymmetry, Proc. J.S.M.E. Semi Intern. Symp., Tokyo (1967), p. 53

    Google Scholar 

  34. Lambert, E.R.; Mehta, H.S.; Kobayashi, S.: A New Upper-Bound Method for Analysis of Some Steady-State Plastic Deformation Processes, Tr. A.S.M.E., Ser. B 91 (1969), p. 731

    Google Scholar 

  35. Nagpal, V.; Altan, T.: Analysis of the Three-Dimensional Metal Flow in Extrusion of Shapes with the Use of Dual Stream Functions, Proc. 3. N.A.M.R.C. (1975), p. 26

    Google Scholar 

  36. Nagpal, V: On the Solution of Three-Dimensional Metal-Forming Processes, Tr. A.S.M.E., Ser. B 99 (1977), p. 624

    Google Scholar 

  37. Hailing, J.; Mitchell, L.A.: Use of Upper Bound Solutions for Predicting the Pressure for the Plane Strain Extrusion of Materials, J. Mech. Eng. Sci. 6 (1964), p. 240

    Article  Google Scholar 

  38. Haddow, J.B.: Comment on “An Upper Bound Solution for Axisymmetric Extrusion”, I.J.M.S. 8 (1966), p. 145

    Google Scholar 

  39. Thomason, P.F.: A Theory for Ductile Fracture by Internal Necking of Cavities, J. Inst. Metals, 96 (1968), p. 360

    Google Scholar 

  40. Zimmernan, Z.; Avitzur, B.: Analysis of the Effect of Strain Hardening on Central Bursting Defects in Drawing and Extrusion, Tr. A.S.M.E., Ser. B 92 (1970), p. 135

    Google Scholar 

  41. Avitzur, B.: Strain-Hardening and Strain-Rate Effects in Plastic Flow through Conical Converging Dies, Tr. A.S.M.E., Ser. B 89 (1967), p. 556

    Google Scholar 

  42. Cristescu, N.: Plastic Flow through Conical Converging Dies, Using a Viscoplastic Constitutive Equation, I.J.M.S. 17 (1975), p. 425

    MATH  Google Scholar 

  43. Lahoti, G.D.; Altan, T.: Prediction of Temperature Distributions in Axisymmetric Compression and Torsion, Tr. A.S.M. p. 89 E., Ser. H 97 (1975), p. 113

    Google Scholar 

  44. Fenton, R.G.: Effects of Ram Speed and Size on the Required Extrusion Pressure, Proc. 3. N.A.M.R.C. (1975), p. 41

    Google Scholar 

  45. Avitzur, B.; Bishop, E.D.; Hahn, W.C.: Impact Extrusion-Upper Bound Analysis of the Early Stage, Tr. A.S.M.E., Ser. B 94 (1972), p. 1079

    Google Scholar 

  46. Tirosh, J.; Kobayashi, S.: Kinetic and Dynamic Effects on the Upper Bound Loads in Metal-Forming Processes, Tr. A.S. M.E., Ser. E 98 (1976), P. 314

    Google Scholar 

  47. Johnson, W.; de Malherbe, M.C.; Venter, R.: Upper Bounds to the Load for the Plane Strain Working of Anisotropic Metals, J. Mech. Eng. Sci. 14 (1972), p. 297

    Article  Google Scholar 

  48. Oyane, M.; Tabata, T.: Slip-Line Field Theory and Upper-Bound Theory for Porous Materials, J. J.S.T.P., 15 (1974), p. 43 [J]

    Google Scholar 

  49. Avitzur, B.: The Production of Bi-Metal Wire, Wire J., 3 (1970), p. 42

    Google Scholar 

  50. Osakada, K.; Limb, M.; Mellor, P.B.: Hydrostatic Extrusion of Composite Rods with Hard Cores, I.J.M.S. 15 (1973), p. 291

    Google Scholar 

  51. Avitzur, B.; Grossman, G.: Hydrodynamic Lubrication in Rolling of Thin Strips, Tr. A.S.M.E., Ser. B 94 (1972), p. 317

    Google Scholar 

  52. Lee, C.H.; Altan, T.: Influence of Flow Stress and Friction upon Metal Flow in Upset Forging of Rings and Cylinders, Tr. A.S.M.E., Ser. B 94 (1972), p. 775

    Google Scholar 

  53. Jain, S.C.; Bramley, A.N.; Lee C.H.; Kobayashi, S.: Theory and Experiment in Extrusion Forging, Proc. 11. Int.M.T. D.R.. Conf. (1970), p. 1097

    Google Scholar 

  54. Takahashi, H.; Murakami, T.: Effects of Tool Angle and Friction in an Open-Die Forging in Axisymmetry — I & II, J. J.S.T.P., 12 (1971), p. 31; p. 122 [J]

    Google Scholar 

  55. Kasuga, Y.; Tsutsumi, S.; Saiki, H.: Research on Material Flow in Sunken Forging Dies — I & II, Tr. J.S.M.E. 39 (1973), p. 1353; p. 1366 [J]; Bull. J.S.M.E. 16 (1973), p. 1960

    Google Scholar 

  56. McDermott, R.P.; Bramley, A.N.: An Elemental Upper Bound Technique for General Use in Forging Analysis, Proc. 15. Int. M.T.D.R. Conf. (1974), p. 437

    Google Scholar 

  57. Geiger, R.: Der Stofffluss beim kombinierten Napffliesspressen, Bericht Inst. Umformtechnik, Univ. Stuttgart, 36 (1976) [G]

    Google Scholar 

  58. Johnson, W.; Kudo, H.: Plane-Strain Deep Indentation, Proc. 5. Int. M.T.D.R. Conf. (1964), p. 441

    Google Scholar 

  59. Nagpal, V.; Lahoti, G.D.; Altan, T.: A Numerical Method for Simultanuous Prediction of Metal Flow and Temperatures in Upset Forging of Rings, Tr., A.S.M.E., Ser. B 100 (1978), p. 413

    Google Scholar 

  60. Kudo, H.; Tamura, K.: Analysis and Experiment in V-Groove Forming — I, II, III & IV, J. Jap. Soc. Precision Eng., 34 (1968), p. 38; 36 (1970), p. 256; p. 318; 37 (1971), p. 534 [J]; Ann. C.I.R.P., 17 (1969), p. 297

    Google Scholar 

  61. Usui, E.; Masuko, M.: Fundamental Study on Three Dimensional Machining — I & II, Tr. J.S.M.E. 38 (1972), p. 3255; p. 3264 [J]; Bull. J.S.M.E. 16 (1973), p. 1214

    Google Scholar 

  62. Hayama, M.: On the Mechanism of Shear Spinning, Proc. 1. I.C.P.E., Tokyo (1974), p. 262

    Google Scholar 

  63. Oh, S.I.; Kobayashi, S.: An Approximate Method for a Three-Dimensional Analysis of Rolling, I.J.M.S. 17 (1975), p. 293

    MATH  Google Scholar 

  64. Chen, C.T.; Ling, F.F.: Upper-Bound Solutions to Axisymmetric Extrusion Problems, I.J.M.S. 10 (1968), p. 863

    Google Scholar 

  65. Nagpal, V.: General Kinematically Admissible Velocity Fields for Some Axisymmetric Metal Forming Problems, Tr. A. S.M.E., Ser. B 96 (1974), p. 1197

    Google Scholar 

  66. Nagpal, V.: Analysis of Plane-Strain Extrusion through Arbitrarily Shaped Dies Using Flow Function, Tr. A.S.M.E., Ser. B 99 (1977), p. 754

    Google Scholar 

  67. Chang, K.T.; Choi, J.C.: Upper Bound Solutions to Symmetrical Extrusion Problems through Curved Dies, Proc. 12. Midwestern Conf. (1971), p. 383

    Google Scholar 

  68. Busch, R. : Untersuchungen liber das Abstreckziehen von zylindrischen Hohlkörpern beim Raumtemperature Bericht Inst. Umformtech., Univ. Stuttgart 10 (1969) [G]; Industrie Anzeiger 94 (1972), p. 609 [G]

    Google Scholar 

  69. Andresen, K.: Blockstauchen zwischen ebenen parallelen Bahnen, Arch. Eisenhütwes. 44 (1973), p. 595 [G]

    Google Scholar 

  70. Lahoti, G.D.; Altan, T.: Prediction of Temperature Distributions in Tube Extrusion Using a Velocity Field without Discontinuities, Proc. 2. N.A.M.R.C. (1974), p. 209

    Google Scholar 

  71. Yang, D.-Y.; Lee, C.-H.: Analysis of Three-Dimensional Extrusion of Sections through Curved Dies by Conformai Transformation, I.J.M.S. 20 (1978), p. 541

    Google Scholar 

  72. Yang, D.-Y.; Kim, M.-U.; Lee, C.-H.: An Analysis for Extrusion of Helical Shapes from Round Billets, ibid., p. 695

    Google Scholar 

  73. Gunasekera, J.S.; Hoshino, S.: Analysis of Extrusion or Drawing of Polygonal Sections through Straightly Converging Die, I.J.M.S. 24 (1982), p. 589

    Google Scholar 

  74. Kiuchi, M.; Kishi, H.; Ishikawa, M.: Study on Non-Symmetric Extrusion and Drawing — I, J. J.S.T.P. 24 (1983), p. 290 [J]

    Google Scholar 

  75. Kiuchi, M.; Ishikawa, M.: Study on Non-Symmetric Extrusion and Drawing of Pipe, Seisan-Kenkyu, Res. Inst. Indust. Sci., Tokyo Univ. 33 (1981), p. 473

    Google Scholar 

  76. Oudin, J.; Ravalard, Y.: A General Method for Computing Plane Strain Plastic Flows, Proc. 20. Int. M.T.D.R. Conf. (1979), p. 211

    Google Scholar 

  77. Avitzur, B.; lobst, J.W.; McDermott, R.P.: AXIFORM — A Computer Simulation Program for Axisymmetric Forging and Extrusion, Proc. 6. N.A.M.R.C. (1978), p. 174

    Google Scholar 

  78. Osman, F.H.; Bramley, A.N.: Metal Flow Prediction in Forging and Extrusion Using UBET, Proc. 20. Int. M.T.D.R. Conf. (1979), p. 51

    Google Scholar 

  79. Thornton, J.N.; Bramley, A.N.: An Approximate Method for Predicting Metal Flow in Forging and Extrusion Operations, Proc. I.M.E. 194 (1980), p. 9

    Article  Google Scholar 

  80. Kiuchi, M.; Shigeta, S.: Application of UBET to Asymmetric Forging Process, J. J.S.T.P. 22 (1931), p. 1208 [J]

    Google Scholar 

  81. Gatto, F.; Giarda, A.: The Characteristics of the Three-Dimensional Analysis of Plastic Deformation According to Spacial Elementary Rigid Regions Method, I.J.M.S. 23 (1981), p. 129

    MATH  Google Scholar 

  82. Tomita, Y.; Seguchi, Y.; Shindo, A.; Tanaka, K.: Note on a Modification of the Stream Function Method and its Application to the Analysis of Metal Forming Processes, Proc. 8. N.A.M.R.C. (1980), p. 144

    Google Scholar 

  83. Kitahara, Y.; Osakada, K.; Fujii, S. Narutaki, R.: Analysis of Plane-Strain Metal Forming Problem with Linear Programming Method., Bull. J.S.M.E., 22 (1979), p. 763

    Google Scholar 

  84. Kudo, H.; Avitzur, B.; Yoshikai, T.; Luksza, J.; Moriyasu, M.; Ito, S.: Cold Forging of Hollow Cylindrical Components Having an Intermediate Flange—UBET Analysis and Experiment, Ann. C.I.R.P. 29 (1980), p. 129

    Google Scholar 

  85. Kiuchi, M.; Hsiang, S.-H.: Study on Application of Limit Analysis to Rolling Process — I, J. J.S.T.P. 22 (1981), p. 927 [J]

    Google Scholar 

  86. Ohga, K.; Kondo, K.; Jitsunari, T.: Research on Precision Die Forging Utilizing Divided Flow — I, II, III, IV, Tr. J.S. M. E., Ser. C 48 (1982), p. 425; p. 435; p. 443; p. 436 [J]

    Google Scholar 

  87. Price, J.W.H.; Alexander, J.M.: A Study of the Isothermal Forming or Creep Forming of a Titanium Alloy, Proc. 4. N.A. M.R.C. (1976), p. 46

    Google Scholar 

  88. Kudo, H.; Shinozaki, K.: Investigation into Multiaxial Extrusion Process to Form Branched Parts, Proc. 1. I.C.P.E., Tokyo (1974), p. 314

    Google Scholar 

  89. Johnson, W.; Mamalis, A.G.: Force Polygons to Determine Upper Bounds and Force Distribution in Plane Strain Metal Forming Processes, Proc. 18. Int. M.T.D.R. Conf. (1977), p. 11

    Google Scholar 

  90. Kiuchi, M.; Murata, Y.: Study on Application of UBET, Proc. 4. I.C.P.E., Tokyo (1980), p. 66

    Google Scholar 

  91. Austen, A.R.; Avitzur, B.: Influence of Hydrostatic Pressure on Void Formation at Hard Particles, Trans. A.S.M.E., Ser. B 96 (1974), p. 1192

    Google Scholar 

  92. Kitahara, Y.; Osakada, K.; Fujii, S.; Narutaki, R.: Analysis of Deformation of Plates in Free Forging Using Rigid-Plastic FEM, J. J.S.T.P. 18 (1977), p. 753 [J]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag, Berlin, Heidelberg

About this paper

Cite this paper

Kudo, H. (1983). A Review of Development and Use of the Upper Bound Approach to Metal Forming Processes. In: Grundlagen der Umformtechnik — Stand und Entwicklungstrends / Fundamentals of Metal Forming Technique — State and Trends. Berichte aus dem Institut für Umformtechnik der Universität Stuttgart, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82186-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82186-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13039-0

  • Online ISBN: 978-3-642-82186-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics