Grundprozesse der elektro-mechanischen Koppelung im Myokard

  • R. Bayer
Part of the Handbuch der inneren Medizin book series (INNEREN, volume 9 / 4)

Zusammenfassung

Die elektro-mechanische Koppelung umfaßt alle Prozesse an Muskelzellen, die mit der elektrischen Membranerregung beginnen und der Kontraktion enden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abbot BC, Mommaerts FAM (1959) A study of inotropic mechanisms in the papillary muscle preparation. J Gen Physiol 42:533–551Google Scholar
  2. Affolter H, Carafoli E (1980) The Ca2+ — Na2+ antiporter of heart mitochondria operates electroneutrally. Biochem Biophys Res Common 95:193–196Google Scholar
  3. Affolter H, Chiesi M, Dabrowsk A, Carafoli E (1976) Calcium regulation in heart cells. The interaction of mitochondria and sarcoplasmic reticulum with troponin-bound calcium. Eur J Biochem 67:289–296Google Scholar
  4. Allen DG, Jewell BR, Murray JW (1974) The contribution of activation process to the length-tension relation in cardiac muscle. Nature 248:606–607PubMedGoogle Scholar
  5. Antoni H, Engstfeld G, Fleckenstein A (1962) Die Mg2+-Lähmung des isolierten Frosch myokards. Ein Beitrag zur Frage der Beziehung zwischen Aktionspotential und Kontraktion. Pflügers Arch Ges Physiol 275:507–525Google Scholar
  6. Antoni H, Jakob R, Kaufmann R (1969) Mechanische Reaktion des Frosch- und Säuge tiermyokards bei Veränderung der Aktionspotentialdauer durch konstante Gleichstromimpulse. Pflügers Arch Ges Physiol 306:33–57Google Scholar
  7. Bailey LE, Ong SD, Queen GM (1972) Calcium movement during contraction in the heart. J Mol Cell Cardiol 4:121–138PubMedGoogle Scholar
  8. Bailin G (1979) Phosphorylation of a bovine cardiac actin complex. Am J Physiol 263:C41–C46Google Scholar
  9. Baker PF, Mc Naughton PA (1976) Kinetics and energetics of calcium efflux from intact squid giant axons. J Physiol (Lond) 259:103–144Google Scholar
  10. Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RH (1969) The influence of calcium on sodium efflux in squid axons. J Physiol (Lond) 200:431–458Google Scholar
  11. Bárány M, Bárány K (1980) Phosphorylation of the myofibrillar proteins. Annu Rev Physiol 42:275–292PubMedGoogle Scholar
  12. Bassingthwaighte JB, Reuter H (1972) Calcium movements and excitation-contraction coupling in cardic cells. In: DeMells WC (ed) Electrical phenomena in the heart. Academic Press, New York, pp 353–395Google Scholar
  13. Bassingthwaighte JB, Beeler GW, Sidell PM, Reuter H, Safford RE (1973) A model for calcium movements and excitation-contraction coupling in cardiac cells. In: Regulation and control in physiological systems. Proceedings ISA, PittsburgGoogle Scholar
  14. Bayer R (1977) Aktivierung und Kontrolle der Herzmuskelkontraktion auf zellulärer Ebene. Habilitationsschrift, Universität DüsseldorfGoogle Scholar
  15. Bayer R, Ehara T (1978) Comparative studies on calcium antagonists. Prog Pharmacol 2/1:31–37Google Scholar
  16. Bayer R, Hennekes R, Kaufmann R, Mannhold R (1975a) Inotropic and electrophysiolo gical actions of verapamil and D 600 in mammalian myocardium I. Pattern of inotropic effects of the racemic compounds. Naunyn Schmiedebergs Arch Pharmacol 290:49–68Google Scholar
  17. Bayer R, Kaufmann R, Mannhold R (1975b) Inotropic and electrophysiological actions of verapamil and D 600 in mammalian myocardium II. Pattern of inotropic effects of the optical isomers. Naunyn Schmiedebergs Arch Pharmacol 290:69–80Google Scholar
  18. Bayer R, Kalusche D, Kaufmann R, Mannhold R (1975c) Inotropic and electrophysiological actions of verapamil and D 600 III. Effects of the optical isomers on transmem brane action potentials. Naunyn Schmiedebergs Arch Pharmacol 290:81–97Google Scholar
  19. Bayer R, Rodenkirchen R, Kaufmann R, Lee JH (1977) The effects of nifedipine on contraction and monophasic action potentials of isolated cat myocardium. Naunyn Schmiedebergs Arch Pharmacol 301:29–37PubMedGoogle Scholar
  20. Bayer R, Kaufmann R, Mannhold R, Rodenkirchen R (1982) The action of specific Ca-antagonists on cardiac electrical activity. Prog Pharmacol 5:53–85Google Scholar
  21. Baylor SM, Oetlicker H (1975) Birefringence experiments on isolated skeletal muscle fibres suggest a possible signal from sarcoplasmic reticulum. Nature 253:97–101PubMedGoogle Scholar
  22. Beeler GW, Reuter H (1970a) Voltage clamp experiments on ventricular myocardial fibres. J Physiol (Lond) 207:165–190Google Scholar
  23. Beeler GW, Reuter H (1970b) Membrane calcium current in ventricular myocardial fibres. J Physiol (Lond) 207:191–209Google Scholar
  24. Beeler GW, Reuter H (1970c) The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J Physiol (Lond) 207:211–229Google Scholar
  25. Bezanilla F, Horowicz P (1975) Fluorescence intensivity changes associated with contractile activation in frog muscle stained with Nil Blue A. J Physiol (Lond) 246:709–735Google Scholar
  26. Blinks JR, Olson CB, Jewell BR, Braveny P (1972) Influence of caffeine and other methyl xanthines on mechanical properties of isolated mammalian heart muscle. Evidence for a dual mode of action. Circ Res 30:367–392PubMedGoogle Scholar
  27. Bowditch HP (1871) Über die Eigentümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Ber Sächs Ges Akad Wiss 652–689Google Scholar
  28. Brady AJ (1965) Time and displacement dependence of cardiac contractility: Problems in defining the active state and force-velocity relations. Fed Proc 24:1410–1420PubMedGoogle Scholar
  29. Carafoli E (1980) Mitochondrial calcium transport: An overview. Dev Biochemistry 14:121–130Google Scholar
  30. Carafoli E, Crompton M (1978) The regulation of intrazellular calcium by mitochondria. Ann NY Acad Sci 307:269–284PubMedGoogle Scholar
  31. Carafoli E, Gavilanes M, Affolter H, De Gómez-Puyou T2+ Gomez-Puyou A (1980) Regulation of the ATP-supported Ca2+ uptake by heart and liver mitochondria. Cell Calcium 1:255–265Google Scholar
  32. Caroni P, Carafoli E (1980) An ATP-dependent Ca2 +-pumping system in dog heart sarcolemma. Nature 283:765–767PubMedGoogle Scholar
  33. Caroni P, Reinlib L, Carafoli E (1980a) Charge movements during the Na+−Ca2 +-exchange in heart sarcolemmal vesicles. Proc Natl Acad Sci USA 77:6354–6358Google Scholar
  34. Caroni P, Malmstroem K, Carafoli E (1980b) An ATP-dependent Ca2+ transporting system in heart sarcolemma. Dev Biochemistry 14:145–146Google Scholar
  35. Costantin LL (1970) The role of sodium current in the radial spread of contraction in frog muscle fibres. J Gen Physiol 55:703–715PubMedGoogle Scholar
  36. Costantin LL, Podolsky RJ (1967) Depolarization of the internal membrane system in the activation of frog skeletal muscle. J Gen Physiol 50:1101–1124PubMedGoogle Scholar
  37. Dhalla NS, McNamara DB, Sulakhe PV (1970) Excitation-contraction coupling in the heart. V. Contribution of mitochondria and sarcoplasmic reticulum in the regulation of calcium concentration in the heart. Cardiology 55:178–191PubMedGoogle Scholar
  38. Dipolo R, Beaugé L (1979) Physiological role of ATP-driven calcium pump in squid axon. Nature 278:272–273Google Scholar
  39. Ebashi S, Endo M (1968) Ca-ion and muscle contraction. Prog Biophys Mol Biol 18:123–183PubMedGoogle Scholar
  40. Edman KAP, Nilson E (1969) The dynamics of the inotropic change produced by altered pacing of rabbit papillary muscle. Acta Physiol Scand 76:230Google Scholar
  41. Ehara T, Kaufmann R (1978) The voltage- and time-dependent effects of (—)-verapamil on the slow inward current in isolated cat ventricular myocardium. J Pharmacol Exp Ther 207:49–55PubMedGoogle Scholar
  42. Endo M (1975a) Conditions required for calcium-induced release of calcium from the sarcoplasmic reticulum. Proc Japan Acad 51:467–472Google Scholar
  43. Endo M (1975b) Mechanism of action of caffeine on the sarcoplasmic reticulum of skeletal muscle. Proc Japan Acad 51:479–484Google Scholar
  44. Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108PubMedGoogle Scholar
  45. Endo M, Blinks JR (1973) Inconstant association of aequorin luminiscence with tension during calcium release in skinned muscle fibres. Nature New Biol 246:218–221PubMedGoogle Scholar
  46. Endo M, Tanaka M, Ebashi S (1968) Release of calcium from sarcoplasmic reticulum in skinned fibres of the frog. Proc Intern Congr Physiol Sci 24th 7:126Google Scholar
  47. England PJ (1975) Correlation between contraction and phosphorylation of the inhibitory subunit of troponin in perfused rat heart. FEBS Lett 50:57–60PubMedGoogle Scholar
  48. Eerd JP van, Takahashi K (1976) Determination of the complete amino acid sequence of bovine cardiac troponin C. Biochemistry 15:1171–1180PubMedGoogle Scholar
  49. Fabiato A, Fabiato F (1973) Activation of skinned cardiac cells. Subcellular effects of cardioactive drugs. Eur J Cardiol 1:143–155PubMedGoogle Scholar
  50. Fabiato A, Fabiato F (1975a) Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 256:54–56Google Scholar
  51. Fabiato A, Fabiato F (1975b) Relaxing and inotropic effects of cyclic AMP on skinned cardiac cells. Nature 253:556–558Google Scholar
  52. Fabiato A, Fabiato F (1975c) Contractions induced by a calcium-triggered release of calcium from sarcoplasmic reticulum of single skinned cardiac cells. J Physiol (Lond) 249:469–495Google Scholar
  53. Fabiato A, Fabiato F (1977) Variations of the membrane potential of the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscle detected with a potential sensitive dye. J Gen Physiol 70:6aGoogle Scholar
  54. Fabiato A, Fabiato F (1978) Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog cat, rabbit, rat, and frog hearts and from fetal and new-born rat ventricles. Ann NY Acad Sci 307:491–522PubMedGoogle Scholar
  55. Falk G (1968) Predicted delays in the activation of the contractile system. Biophys J 8:608–625PubMedGoogle Scholar
  56. Fawcett DW, McNutt NS (1969) The ultrastructure of cat myocardium I. Ventricular papillary muscle. J Cell Biol 42:1–45PubMedGoogle Scholar
  57. Fenn WO (1923) A quantitative comparison between the energy liberated and the work performed by the isolated sartorins of the frog. J Physiol (Lond) 58:175Google Scholar
  58. Ferrier GW, Moe GK (1973) Effect of calcium on acetylstrophantidin induced transient depolarization in canine Purkinje-tissue. Circ Res 33:508–515PubMedGoogle Scholar
  59. Fiskum G, Lehninger AL (1979) Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport. J Biol Chem 254:6236–6239PubMedGoogle Scholar
  60. Ford LE, Podolsky RJ (1968) Force development and calcium movements in skinned muscle fibres. Fed Proc 27:375Google Scholar
  61. Ford EL, Podolsky RJ (1972) Calcium uptake and force development by skinned muscle fibres in EGTA buffered solutions. J Physiol (Lond) 223:1–19Google Scholar
  62. Ford LE, Spotnitz AJ, Sonnenblick EH (1970) Coupling between ionic stimulation and contraction of skeletal muscle cells. J Gen Physiol 55:138Google Scholar
  63. Fozzard HA (1977) Heart: Excitation contraction coupling. Annu Rev Physiol 39:201–220PubMedGoogle Scholar
  64. Frearson N, Perry SV (1975) Phosphorylation of the light-chain components of myosin from cardiac and red skeletal muscles. Biochem J 151:99–107PubMedGoogle Scholar
  65. Froehlich JP, Taylor EW (1976) Transient state kinetic studies of sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem 251:2307–2315PubMedGoogle Scholar
  66. Gergely J (1980) Ca2+ control of actin-myosin interaction. Basic Res Cardiol 75:18–25PubMedGoogle Scholar
  67. Gibbons WR, Fozzard HA (1971) Voltage dependence and time dependence of contraction in sheep cardiac Purkinje fibres. Circ Res 28:446–460PubMedGoogle Scholar
  68. Gibbons WR, Fozzard HA (1975) Relationships between voltage and tension in sheep cardiac Purkinje fibres. J Gen Physiol 65:345–365PubMedGoogle Scholar
  69. Glitsch HG, Reuter H, Scholz H (1970) The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J Physiol 209:25–43PubMedGoogle Scholar
  70. Haselbach W (1980) Quantitative aspects of the calcium concept of excitation contraction coupling — a critical evaluation. Basic Res Cardiol 75:2–12Google Scholar
  71. Hennekes R (1979) Rückkoppelungsschleifen im Bereich der elektro-mechanischen Koppelung des Herzmuskels. Habilitationsschrift, Universität DüsseldorfGoogle Scholar
  72. Hennekes R, Kaufmann R, Lab M, Steiner R (1977) Feedback loops involved in cardiac excitation-contraction coupling: Evidence for two different pathways. J Mol Cel Cardiol 9:699–713Google Scholar
  73. Hennekes R, Kaufmann R, Lab M (1981) The dependence of cardiac membrane excitation and contractile activity on active muscle shortening. Pflügers Arch Ges Physiol 392:22–28Google Scholar
  74. Herzig GJ, Rüegg JC (1980) Investigations on glycerinated cardiac muscle fibres in relation to the problem of regulation of cardiac contractility — effects of Ca2+ and c-AMP. Basic Res Cardiol 75:26–33PubMedGoogle Scholar
  75. Hill AV (1964) The effect of tension in prolonging the active state in a twitch. Proc Soc Biol 159:595Google Scholar
  76. Hodgkin AL, Horowicz P (1960) Potassium contractures in single muscle fibres. J Physiol (Lond) 117:500–544Google Scholar
  77. Huxley AF, Taylor RE (1958) Local activation of striated muscle fibres. J Physiol (Lond) 144:426–441Google Scholar
  78. Ikemoto N (1974) The calcium binding sites involved in the regulation of the purified adenosine triphosphatase of the sarcoplasmic reticulum. J Biol Chem 249:649–651PubMedGoogle Scholar
  79. Inesi G, Malan N (1976) Mechanism of calcium release in sarcoplasmic reticulum. Life Sci 18:773–779PubMedGoogle Scholar
  80. Inesi G, Kurzmack M, Verjovski-Almeida S (1978) ATPase phosphorylation and calcium ion translocation in the transient state of sarcoplasmic reticulum activity. Ann NY Acad Sci 307:224–227PubMedGoogle Scholar
  81. Jewell BR, Rovell JM (1973) Influence of previous mechanical events on the contractility of isolated cat papillary muscle. J Physiol (Lond) 235:715–740Google Scholar
  82. Jewell BR, Wilkie DR (1960) The mechanical properties of relaxing muscle. J Physiol (Lond) 152:30–47Google Scholar
  83. Jilka RL, Mortonosi AN, Tillack TW (1975) Effect of the purified (Mg2+ −Ca2+)-actvated ATP-ase of sarcoplasmic reticulum upon the passive Ca2 +-permeability and ultrastructure of phospholipid vesicles. J Biol Chem 250:7511–7524PubMedGoogle Scholar
  84. Julian FJ, Sollins MR (1975) Sarcomere length-tension relations in living rat papillary muscle. Circ Res 37:299–308PubMedGoogle Scholar
  85. Jundt H, Prozig H, Reuter H, Stucki JW (1975) The effect of substances releasing intracel lular calcium ions on sodium-dependent calcium efflux from guinea-pig auricles. J Physiol (Lond) 246:229–253Google Scholar
  86. Kanazawa T, Yamada S, Yamamoto T, Tonomura Y (1971) Reaction mechanism of the Ca2 +-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. V. vecto rial requirements for calcium and magnesium ions of three partial reactions of ATPase : Formation and decomposition of a phosphorylated intermediate and ATP formation from ADP in the intermediate. J Biochem 70:95–123PubMedGoogle Scholar
  87. Kasai M, Miyamoto H (1973) Depolarization induced calcium release from sarcoplasmic reticulum membrane fragments by changing ionic environment. FEBS Lett 34:299–301PubMedGoogle Scholar
  88. Katz AM, Tada M, Kirchberger MA (1975) Control of calcium transport in the myocardium by the cyclic AMP-protein kinase system. Adv Cyclic Nucleotide Res 5:453–472PubMedGoogle Scholar
  89. Kaufmann R, Fleckenstein A (1965) Die Bedeutung der Aktionspotential-Dauer und der Ca2+-Ionen beim Zustandekommen der positiv-inotropen Kältewirkung am Warmblütermyokard. Pflügers Arch Ges Physiol 285:1–18Google Scholar
  90. Kaufmann RL, Lab MJ, Hennekes R, Krause H (1971) Feedback interaction of mechanical and electrical events in the isolated ventricular myocardium (cat papillary muscle). Pflügers Arch Ges Physiol 324:100–123Google Scholar
  91. Kaufmann R, Bayer R, Harnasch C (1972) Autoregulation of contractility in the myocar dial cell. Pflügers Arch Ges Physiol 332:96–116Google Scholar
  92. Kaufmann R, Bayer R, Fürniss T, Krause H, Tritthart H (1974) Calcium-movement controlling cardiac contractility II. Analog computation of cardiac excitation-contraction coupling on the basis of calcium kinetics in a multi-compartment model. J Mol Cell Cardiol 6:543–559PubMedGoogle Scholar
  93. Kavaler F (1959) Membrane depolarization as a cause of tension development in mammalian ventricular muscle. Am J Physiol 197:968–970PubMedGoogle Scholar
  94. Kitazawa T (1975) Physiological significance of Ca-uptake by mitochondria in the heart in comparison with that by its sarcoplasmic reticulum. J Biochem 7:593Google Scholar
  95. Kohlhardt M, Bauer B, Krause H, Fleckenstein A (1972) Differentiation on the trans membrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pflügers Arch Ges Physiol 335:309–322Google Scholar
  96. Kohlhardt M, Bauer B, Krause H, Fleckenstein A (1973) Selective inhibition of the transmembrane Ca-conductivity of mammalian myocardial fibres by Ni, Co and Mn ions. Pflügers Arch Ges Physiol 338:115–123Google Scholar
  97. Langer GA (1973) Heart: Excitation-contraction coupling. Annu Rev Physiol 35:55–86PubMedGoogle Scholar
  98. Langer GS, Brady AJ (1963) Calcium flux in mammalian ventricular myocardium. J Gen Physiol 46:703–720PubMedGoogle Scholar
  99. Lehninger AL, Reynafarje B, Vercesi A, Tew WP (1978) Transport and accumulation of calcium in mitochondria. Ann NY Acad Sci 307:160–176PubMedGoogle Scholar
  100. Lennan DH Mac (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci USA 68:1231–1235Google Scholar
  101. Lüllmann H, Peters T (1977) Plasmalemmal calcium in cardiac excitation-contraction coupling. Clin Exp Pharmacol Physiol 4:49–57PubMedGoogle Scholar
  102. Mannhold R, Rodenkirchen R, Bayer R (1982) Qualitative and quantitative structure activity relationships of specific Ca-antagonists. Prog Pharmacol 5:25–52Google Scholar
  103. McDonald TF, Nawrath H, Trautwein W (1975) Membrane currents and tension in cat ventricular muscles treated with cardiac glycosides. Circ Res 37:674–682PubMedGoogle Scholar
  104. Meissner G (1975) Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochem Biophys Acta 389:51–68PubMedGoogle Scholar
  105. Meissner G, Fleischer S (1974) Dissociation and reconstitution of functional sarcoplasmic reticulum vesicles. J Biol Chem 249:302–309PubMedGoogle Scholar
  106. Morad M, Trautwein W (1968) The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pflügers Arch Ges Physiol 299:66–82Google Scholar
  107. Mullins LJ (1979) The generation of electric currents in cardiac fibres by Na/Ca exchange. Am J Physiol 236:C103–C110PubMedGoogle Scholar
  108. Mullins LJ, Brinley FJ Jr (1975) The sensitivity of calcium efflux from squid axons to changes in membrane potential. J Gen Physiol 65:135–152PubMedGoogle Scholar
  109. Natori R (1954) The property and contraction process of isolated myofibrils. Jikeikai Med J 1:119–126Google Scholar
  110. Niedergerke R (1963) Movements of calcium in beating ventricles of the frog heart. J Physiol (Lond) 167:551–580Google Scholar
  111. Niedergerke R, Page S, Talbot MS (1969) Determination of calcium movements in heart ventricles of the frog. J Physiol (Lond) 202:58–60Google Scholar
  112. Noack EA, Heinen EM (1977) A kinetic study of calcium transport by heart mitochondria. Eur J Biochem 79:245–250PubMedGoogle Scholar
  113. Ogawa Y (1970) Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine. J Biochem 67:667–683PubMedGoogle Scholar
  114. Ostwald IJ, MacLennan DH (1974) Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 749:974–979Google Scholar
  115. Pardee AB (1968) Membrane transport proteins. Science 162:623–637Google Scholar
  116. Parmeley WW, Brutsaert DL, Sonnenblick EH (1969) Effects of altering loading on contractile events in isolated cat papillary muscle. Circ Res 24:527–532Google Scholar
  117. Patriarca PI, Carafoli E (1968) A study of the intracellular transport of calcium in the rat heart. J Cell Physiol 72:29–38PubMedGoogle Scholar
  118. Perry SV (1979) The regulation of contractile activity in muscle. Biochem Soc Trans 7:593–617PubMedGoogle Scholar
  119. Pitts BJR (1979) Stoichiometrie of sodium-calcium exchange in cardiac sarcolemmal vesicles. J Biol Chem 254:6232–6235PubMedGoogle Scholar
  120. Pullman ME, Monroe GL (1963) A naturally occuring inhibitor of mitochondrial adeno sine triphosphatase. J Biol Chem 238:3762–3769PubMedGoogle Scholar
  121. Raia PJ La, Morkin E (1974) Adenosine 3′.5′-monophosphate-dependent membrane phosphorylation. A possible mechanism for the control of microsomal calcium transport in heart muscle. Circ Res 35:298–306Google Scholar
  122. Reeves JP, Sutko JL (1980) Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science 208:1461–1464PubMedGoogle Scholar
  123. Reuter U (1967) The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J Physiol (Lond) 192:479–492Google Scholar
  124. Reuter H (1973) Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol 26:1–43PubMedGoogle Scholar
  125. Reuter H (1974) Exchange of calcium ions in mammalian myocardium. Mechanisms and physiological significance. Circ Res 34:599–605PubMedGoogle Scholar
  126. Reuter H (1979) Properties of two inward membrane currents in the heart. Annu Rev Physiol 41:413–424PubMedGoogle Scholar
  127. Reuter H, Scholz H (1977a) A study of the ion selectivity and the kinetik properties of the calcium-dependent slow inward current in mammalian cardiac muscle. J Physiol (Lond) 264:17–47Google Scholar
  128. Reuter H, Scholz H (1977b) The regulation of the Ca-conductance of cardiac muscle by adrenaline. J Physiol (Lond) 264:49–62Google Scholar
  129. Reuter H, Seitz N (1968) The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol (Lond) 195:451–470Google Scholar
  130. Rinaldi ML, Capony J-P, Demaille JG (1982) The cyclic AMP-dependent modulation of cardiac sarcolemmal slow calcium channels. J Mol Cell Cardiol 14:279–289PubMedGoogle Scholar
  131. Ringer S (1883) A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol (Lond) 4:29–42Google Scholar
  132. Robinson GA, Butcher RW, YEI, Morgan HE, Sutherland EW (1965) The effect of epinephrine on adenosine 3′,5′phosphate levels in the isolated perfused rat heart. Mol Pharmacol 1:168–177Google Scholar
  133. Rodenkirchen R, Mannhold R, Bayer R (1982) Specific and nonspecific Ca antagonists. A structure activity analysis of cardio-depressive drugs. Prog Pharmacol 5:9–23Google Scholar
  134. Rosen MR, Gelband H, Merker C, Hoffman BF (1973) Mechanisms of digitalis toxicity. Circulation 47:681–689PubMedGoogle Scholar
  135. Rossi CS, Vasington FD, Carafoli E (1973) The effect of ruthenium red on the uptake and release of Ca2+ by mitochondria. Biochem Biophys Res Commun 50:846–852PubMedGoogle Scholar
  136. Roufogalis BD (1979) Regulation of calcium translocation across the red blood cell membrane. Can J Physiol Pharmacol 57:1331–1349Google Scholar
  137. Sandoval IV, Cuatrecasas P (1976) Opposing effects of cyclic GMP on protein phosphory lation in tubulin preparations. Nature 262:511–513PubMedGoogle Scholar
  138. Sands SD, Winegrad S (1970) Treppe and total calcium content of the frog ventricle. Am J Physiol 218:908–910PubMedGoogle Scholar
  139. Saris NE, Åkerman EO (1980) Uptake and release of bivalent cations in mitochondria. Curr Top Bioenerg 10:103–179Google Scholar
  140. Scarpa A, Graziotti P (1973) Mechanisms for intracellular calcium regulation in heart I. Stopped-flow measurements of Ca2+ uptake by cardiac mitochondria. J Gen Physiol 62:756–772PubMedGoogle Scholar
  141. Schatzmann HJ (1966) ATP-dependent Ca2+-extrusion from human red cells. Experientia 22:364–368PubMedGoogle Scholar
  142. Schwartz A (1972) Calcium metabolism. Cardiology 57:16–23PubMedGoogle Scholar
  143. Shigekawa M, Finega JA, Katz AM (1976) Calcium transport ATP-ase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarco plasmic reticulum. J Biol Chem 251:6894–6900PubMedGoogle Scholar
  144. Solaro RJ, Briggs NF (1974) Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle. Circ Res 34:531–540PubMedGoogle Scholar
  145. Sordahl LA (1974) Effects of magnesium, ruthenium red and the antibiotic ionophore A23187 on initial rates of calcium uptake and release by heart mitochondria. Arch Biochem Biophys 167:104–115Google Scholar
  146. Stewart PS, MacLennan DH, Shamoo AE (1976) Isolation and characterisation of tryptic fragments of the adenosine tryphosphatase of sarcoplasmic reticulum. J Biol Chem 251:712–779PubMedGoogle Scholar
  147. Stull JT, Brostrom CO, Krebs EG (1972) Phosphorylation of the inhibitor component of troponin by phosphorylase kinase. J Biol Chem 247:5272–5274PubMedGoogle Scholar
  148. Tada M, Kirchberger MA, Repke DI, Katz AM (1974) Stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′5-monophosphate-dependent protein kinase. J Biol Chem 249:617–6180Google Scholar
  149. Tada M, Kirchberger MA, Katz AM (1975) Phosphorylation of a 22.500 dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′ : 5′-monophosphate-depen dent protein kinase. J Biol Chem 250:2640–2647PubMedGoogle Scholar
  150. Tada M, Yamamoto T, Tonomura Y (1978) Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev 58:1–79PubMedGoogle Scholar
  151. Taylor SR, Rüdel R (1970) Striated muscle fibres: inactivation of contraction induced by shortening. Science 167:882–884PubMedGoogle Scholar
  152. Taylor SR, Rüdel R, Blinks JR (1975) Calcium transients in amphibian muscle. Fed Proc 34:1379–1381PubMedGoogle Scholar
  153. TenEick R, Nawrath H, McDonald TF, Trautwein W (1976) On the mechanism of the negative inotropic effect of acetylcholine. Pfluegers Arch 361:207–213Google Scholar
  154. Trautwein W (1973) Membrane currents in cardiac muscle fibers. Physiol Rev 53:793–835Google Scholar
  155. Tritthart H, Kaufmann R, Volkmer HP, Bayer R, Krause H (1973) Calcium movement controlling myocardial contractility I. Voltage-current- and time-dependence of mechanical activity under voltage clamp conditions (cat papillary muscles and trabecu lae). Pfluegers Arch 338:207–231Google Scholar
  156. Tsien RW, Kass RS, Weingart R (1978) Calcium ions and membrane current changes induced by digitales in cardiac Purkinje fibers. Ann NY Acad Sci 307:483–490PubMedGoogle Scholar
  157. Vaughan-Williams EM (1959) Simultaneous measurements of contractions and intracellu lar potentials in isolated rabbit atria exposed to acetylcholine. J Physiol (Lond) 14:325Google Scholar
  158. Weber A (1971) Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis. J Gen Physiol 57:50–63PubMedGoogle Scholar
  159. Weber A, Herz R, Reiss I (1966) Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum. Biochem Z 345:329–369Google Scholar
  160. Weingart R, Kass RS, Tsien RW (1978) Is digitalis inotropy associated with enhanced slow calcium current? Nature 273:389–392PubMedGoogle Scholar
  161. Winegrad S (1961) The possible role of calcium in exciation-contraction coupling of heart muscle. Circulation 24:523–529PubMedGoogle Scholar
  162. Winegrad S (1965) Autoradiographic studies of intracellular calcium in frog skeletal muscle. J Gen Physiol 48:455–479PubMedGoogle Scholar
  163. Winegrad S (1968) Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol 51:65–83PubMedGoogle Scholar
  164. Winegrad S, Shanes AM (1962) Calcium flux and contractility in guinea pig atria. J Gen Physiol 45:271–394Google Scholar
  165. Wood EH, Heppner RL, Weidmann S (1969) Inotropic effects of electric currents I. Positive and negative effects of electric currents or current pulses applied during cardiac action potentials. II. Hypothesis: Calcium movements, excitation-contraction coupling and inotropic effects. Circ Res 24:409–445PubMedGoogle Scholar
  166. Yamada S, Tonomura Y (1972) Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle VII. Recognition and release of Ca2+-ions. J Biochem 72:417–425PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • R. Bayer

There are no affiliations available

Personalised recommendations