Skip to main content

Die Regulation der Proteinsynthese am normalen Herzen und unter pathologischen Bedingungen

  • Chapter
Herzinsuffizienz

Part of the book series: Handbuch der inneren Medizin ((INNEREN 9,volume 9 / 4))

Zusammenfassung

Im Verlauf der Evolution wie auch der individuellen Ontogenese einzelner Säugetiere und des Menschen spielt die Anpassung des Herzmuskels an die jeweiligen Erfordernisse des Kreislaufs eine entscheidende Rolle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abelman W, Ramirez A (1975) Alcoholic cardiovascular disease. In: Rothschild M, Oratz M, Schreiber S (eds) Alcoholic and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, p 459

    Google Scholar 

  • Abelson J (1979) RNA processing and the intervening sequence problem. Annu Rev Biochem 48:1035–1069

    PubMed  CAS  Google Scholar 

  • Adler C, Sandritter W (1980) Alterations of substances (DNA, myoglobin, myosin, protein) in experimentally induced cardiac hypertrophy and under the influence of drugs (isoproterenol, cytostatics, Strophantin). Basic Res Cardiol 75:126–138

    PubMed  CAS  Google Scholar 

  • Albin R, Dowell R, Zak R, Rabinowitz M (1973) Synthesis and degradation of mitochondrial components in hypertrophied rat heart. Biochem J 136:629–637

    PubMed  CAS  Google Scholar 

  • Alexander C (1966) Idiopathic heart disease. I. Analysis of 100 cases, with special reference to chronic alcoholism. Am J Med 41:216

    Google Scholar 

  • Alexander C, Sekhri K, Nagasawa H (1977) Alcoholic cardiomyopathy in mice electron microscopic observations. J Mol Cell Cardiol 9:247–254

    PubMed  CAS  Google Scholar 

  • Aloni Y, Attardi G (1971) Symmetrical in-vivo transcription of mitochondrial DNA in HeLa cells. Proc Natl Acad Sci USA 68:1757–1761

    PubMed  CAS  Google Scholar 

  • Anversa P, Olivetti G, Melissari M, Loud A (1980) Stereological measurement of cellular and subcellular hypertrophy and hyperplasia in the papillary muscle of adult rat. J Mol Cell Cardiol 12:781–795

    PubMed  CAS  Google Scholar 

  • Arnold H, Siddiqui M (1979) Control of embryonic development: Isolation and purification of chick heart myosin light chain mRNA and quantitation with a cDNA probe. Biochemistry 18:647–654

    PubMed  CAS  Google Scholar 

  • Aschenbrenner V, Zak R, Cutilletta A, Rabinowitz M (1971) Effect of hypoxia on degradation of mitochondrial components in rat cardiac muscle. Am J Physiol 221:1418–1425

    PubMed  CAS  Google Scholar 

  • Ashwell M, Work T (1970) The biogenesis of mitochondria. Annu Rev Biochem 39:251–290

    PubMed  CAS  Google Scholar 

  • Aumont M, Bercovici J, Berson G, Leger J, Preteseille M, Swynghedauw B (1980a) The incorporation of radioactive lysine or tyrosine into cardiac and skeletal myofibrillar and non-myofibrillar contractile proteins. Biomedicine 32:139–143

    CAS  Google Scholar 

  • Aumont M, Ray A, Rossi A, Swynghedauw B (1980b) A technique for preparing non-degraded rRNA from adult mammalian isolated heart muscle cells. J Mol Cell Cardiol 12:409–413

    CAS  Google Scholar 

  • Austin S, Clemens M (1981) The regulation of protein synthesis in mammalian cells by amino acid supply. Biosci Rep 1:35–44

    PubMed  CAS  Google Scholar 

  • Badeer H (1980) Adaptive growth of the heart in health and disease. International Medicine 1:15–19

    Google Scholar 

  • Baliga B, Pronczuk A, Munro H (1968) Regulation of polysome aggregation in a cell-free system through amino acid supply. J Mol Biol 34:199–218

    PubMed  CAS  Google Scholar 

  • Baliga B, Zähringer J, Trachtenberg M, Moskowitz M, Munro H (1976) Mechanism of D-Amphetamine inhibition of protein synthesis. Biochim Biophys Acta 442:239–250

    PubMed  CAS  Google Scholar 

  • Beller B, Mongillo S (1969) Inhibition of incorporation of leucine into myocardial proteins of the rat by antiarrhythmic agents. Circ Res 25:401–406

    PubMed  CAS  Google Scholar 

  • Beznak M, Korecky B, Thomas G (1969) Regression of cardiac hyperthrophies of various origin. Can J Physiol Pharmacol 47:579–586

    PubMed  CAS  Google Scholar 

  • Beznak M, French I, Garg V, Rajhathy I, Kako K (1974) Myocardial nucleic acid synthesis following constriction of the aorta in rats. Basic Res Cardiol 69:499–508

    PubMed  CAS  Google Scholar 

  • Bing R (1965) Cardiac metabolism. Physiol Rev 45:171–213

    PubMed  CAS  Google Scholar 

  • Birbeck M, Mercer E (1961) Cytology of cells which synthesize protein. Nature 189:558–560

    Google Scholar 

  • Bischoff R, Holtzer H (1969) Mitosis and the process of differentiation of myogenic cells in vitro. J Cell Biol 41:188–201

    PubMed  CAS  Google Scholar 

  • Bishop S (1974) Effect of aortic stenosis on myocardial cell growth, hyperplasia, and ultrastructure in neonatal dogs. Recent Adv Stud Cardiac Struct Metab 3:637–656

    Google Scholar 

  • Bishop S, Hines P (1975) Cardiac muscle cytoplasmic and nuclear development during canine neonatal growth. Recent Adv Stud Cardiac Struct Metab 8:77–98

    PubMed  CAS  Google Scholar 

  • Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77:1496–1500

    PubMed  CAS  Google Scholar 

  • Blobel G, Potter R (1967) Studies on free and membrane-bound ribosomes in rat liver. J Mol Biol 26:279–301

    PubMed  CAS  Google Scholar 

  • Bollinger O (1884) Ăśber die Häufigkeit und Ursachen der idiopathischen Herzhypertrophie in MĂĽnchen. Dtsch Med Wochenschr 10:180–181

    Google Scholar 

  • Bolte H (1976) Alkoholkardiomyopathie. Munch Med Wochenschr 118:355–360

    CAS  Google Scholar 

  • Bonner W, Laskey R (1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46:83–88

    PubMed  CAS  Google Scholar 

  • Borst P (1972) Mitochondrial nucleic acids. Annu Rev Biochem 41:333–376

    PubMed  CAS  Google Scholar 

  • Borst P (1981) The expression of split genes in yeast mitochondrial DNA. Biochem Soc Trans 9:51

    Google Scholar 

  • Brawerman G (1974) Eukaryotic messenger RNA. Annu Rev Biochem 43:621–642

    PubMed  CAS  Google Scholar 

  • Breuer C, Florini J (1965) Amino acid incorporation into protein by cell-free systems from rat skeletal muscle. IV. Effects of animal age, androgens, and anabolic agents on activity of muscle ribosomes. Biochemistry 4:1544–1550

    PubMed  CAS  Google Scholar 

  • Brigden W, Robinson J (1964) Alcoholic heart disease. Br Med J 2:1283–1289

    PubMed  CAS  Google Scholar 

  • Bugaisky L, Zak R (1979) Cellular growth of cardiac muscle after birth. Tex Rep Biol Med 39:123–138

    PubMed  CAS  Google Scholar 

  • Burch G, Walsh J (1960) Cardiac insufficiency in chronic alcoholism. Am J Cardiol 6:864–874

    PubMed  CAS  Google Scholar 

  • Burke J, Rubin E (1979) The effects of ethanol and acetaldehyde on the products of protein synthesis by liver mitochondria. Lab Invest 41:393–400

    PubMed  CAS  Google Scholar 

  • Caldarera C, Casti A, Rossoni C, Visioli O (1971) Polyamines and noradrenaline following myocardial hypertrophy. J Mol Cell Cardiol 3:121–126

    PubMed  CAS  Google Scholar 

  • Caldarera C, Orlandini G, Casti A, Moruzzi G (1974) Polyamine and nucleic acid metabolism in myocardial hypertrophy of the overloaded heart. J Mol Cell Cardiol 6:95–103

    PubMed  CAS  Google Scholar 

  • Campbell P, Blobel G (1976) The role of organelles in the chemical modification of the primary translation products of secretory proteins. FEBS Lett 72:215–226

    PubMed  CAS  Google Scholar 

  • Canfield J, Klionsky B (1959) Myocardial ischemia and early infarction: An electron microscopic study. Am J Pathol 35:489–523

    Google Scholar 

  • Carter W, Benjamin W, Faas F (1980) Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle. Metabolism 29:910–915

    PubMed  CAS  Google Scholar 

  • Casey J, Cohen M, Rabinowitz M, Fukuhara H, Getz G (1972) Hybridization of mitochondrial transfer RNA’s with mitochondrial and nuclear DNA of grande (wild type) yeast. J Mol Biol 63:431–440

    PubMed  CAS  Google Scholar 

  • Chain E, Sender P (1972) Insulin and protein synthesis in the perfused rat heart. Biochem J 129:14

    Google Scholar 

  • Chain E, Sender P (1973) Protein synthesis by perfused hearts from normal and insulin-deficient rats. Biochem J 132:593–601

    PubMed  CAS  Google Scholar 

  • Chambon P (1975) Eukaryotic nuclear RNA polymerases. Annu Rev Biochem 44:613–638

    PubMed  CAS  Google Scholar 

  • Chizzonite R, Everett A, Clark W, Zak R (1983) Molecular variants of cardiac myosin: Identification, isolation, quantitation and measurement of synthesis rates. In: Alpert N (ed) Perspectives in cardiovascular research, vol 7: Myocardial hypertrophy. Raven Press, New York, pp 477–496

    Google Scholar 

  • Civelli O, Vincent A, Maundrell K, Buri J, Scherrer K (1980) The translational repression of globin mRNA in free cytoplasmic ribonucleoprotein complexes. Eur J Biochem 107:577–585

    PubMed  CAS  Google Scholar 

  • Claycomb W (1975) Biochemical aspects of cardiac muscle differentiation. Deoxyribonucleic acid synthesis and nuclear cytoplasmic deoxyribonucleic acid polymerase activity. J Biol Chem 250:3229–3235

    PubMed  CAS  Google Scholar 

  • Claycomb W (1977) DNA synthetic activity of nuclei isolated from differentiating cardiac muscle and association of DNA polymerase with the outer nuclear membrane. Dev Biol 61:245–251

    PubMed  CAS  Google Scholar 

  • Claycomb W (1978) Biochemical aspects of cardiac muscle differentiation. Biochem J 171:289–298

    PubMed  CAS  Google Scholar 

  • Crie J, Millward D, Bates P, Griffin E, Wildenthal K (1981) Age-related alterations in cardiac protein turnover. J Mol Cell Cardiol 13:589–598

    PubMed  CAS  Google Scholar 

  • Csapo Z, Dusek J, Rona G (1974) Peculiar myofilament changes near the intercalated disc in isoproterenol-induced cardiac muscle cell injury. J Mol Cell Cardiol 6:79–82

    PubMed  CAS  Google Scholar 

  • Cutilletta A (1980) Regression of myocardial hypertrophy. II. RNA synthesis and RNA polymerase activity. J Mol Cell Cardiol 12:827–832

    PubMed  CAS  Google Scholar 

  • Cutilletta A, Thilenius O, Arcilla R (1972) Adenyl cyclase activity in experimental myocardial hypertrophy. Am J Cardiol 29:258

    Google Scholar 

  • Cutilletta A, Dowell R, Rudnik M, Arcilla R, Zak R (1975) Regression of myocardial hypertrophy. I. Experimental model, changes in heart weight, nucleic acids and collagen. J Mol Cell Cardiol 7:767–781

    CAS  Google Scholar 

  • Cutilletta A, Reddy M, Dowell R, Zak R, Rabinowitz M (1976) Lysosomal and neutral hydrolase activity during the regression of cardiac hypertrophy. Recent Adv Stud Cardiac Struct Metab 7:111–118

    CAS  Google Scholar 

  • Cutilletta A, Aumont M, Nag A, Zak R (1977) Separation of muscle and non-muscle cells from adult rat myocardium. An application to the study of RNA polymerase. J Mol Cell Cardiol 9:399–412

    PubMed  CAS  Google Scholar 

  • Cutilletta A, Rudnik M, Zak R (1978) Muscle and non-muscle cell RNA polymerase activity during the development of myocardial hypertrophy. J Mol Cell Cardiol 10:677–687

    PubMed  CAS  Google Scholar 

  • Darnell S (1976) mRNA structure and function Prog Nucleic Acid Res Mol Biol 19:493–511

    PubMed  CAS  Google Scholar 

  • Dart C, Holloszy J (1969) Hypertrophied non-failing rat heart. Circ Res 25:245–253

    PubMed  CAS  Google Scholar 

  • Datta B, Silver M (1975) Cardiomegaly in chronic anemia in rats. An experimental study including ultrastructural, histometric, and stereologic observations. Lab Invest 32:503–514

    PubMed  CAS  Google Scholar 

  • David M, Avi-Dor Y (1975) Stimulation of protein synthesis in cultured heart muscle cells by glucose. Biochem J 150:405–411

    PubMed  CAS  Google Scholar 

  • DeLeiris J, Feuvray D (1979) Morphological correlates of myocardial enzyme release. In: Hearse D, DeLeiris J (eds) Enzyme in cardiology. Wiley, Chichester, pp 445–460

    Google Scholar 

  • DeLeiris J, Opie L (1978) Beneficial effects of glucose, insulin and potassium and detrimental effects of free fatty acid on enzyme release and on mechanical performance of isolated rat heart with coronary artery ligation. Cardiovasc Res 12:585–596

    CAS  Google Scholar 

  • DeLeiris J, Lubbe W, Opie L (1975) Effects of free fatty acids and glucose on enzyme release in experimental myocardial infarction. Nature 253:746–747

    CAS  Google Scholar 

  • Dintzis H (1961) Assembly of the peptide chains of hemoglobin. Proc Natl Acad Sci USA 47:247–261

    PubMed  CAS  Google Scholar 

  • Dowell R, McManus R (1978) Pressure induced cardiac enlargement in neonatal and adult rats: Left ventricular functional characteristics and evidence of cardiac cell proliferation in the neonate. Circ Res 42:303–310

    PubMed  CAS  Google Scholar 

  • Doyle C, Zak R, Fischman D (1974) The correlation of DNA synthesis and DNA polymerase activity in the developing chick heart. Dev Biol 37:133–145

    PubMed  CAS  Google Scholar 

  • Ernst V, Levin D, London J (1978) Evidence that glucose-6-phosphate regulates protein synthesis initiation in reticulocyte lysates. J Biol Chem 253:7163–7172

    PubMed  CAS  Google Scholar 

  • Everett A, Sparrow M, Taylor R (1979) Early changes in myocardial protein synthesis in vivo in response to right ventricular pressure overload in the dog. J Mol Cell Cardiol 11:1253–1263

    PubMed  CAS  Google Scholar 

  • Fanburg B, Matsushita S, Raben M (1974) Nucleic acid metabolism in cardiac hypertrophy. Recent Adv Stud Cardiac Struct Metab 3:575–588

    Google Scholar 

  • Ferrans V (1978) Myocardial ultrastructure in human cardiac hypertrophy. In: Kaltenbach M, Loogen F, Olsen E (eds) Cardiomyopathy and myocardial biopsy. Springer, Berlin Heidelberg New York, pp 100–120

    Google Scholar 

  • Ferrans V, Herman E (1978) Cardiomyopathy induced by antineoplastic drugs. In: Kaltenbach M, Loogen F, Olsen E (eds) Cardiomyopathy and myocardial biopsy. Springer, Berlin Heidelberg New York, pp 12–26

    Google Scholar 

  • Ferrans V, Buja L, Roberts W (1975) Cardiac morphologic changes produced by ethanol. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis: biochemical and clinical. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 139–185

    Google Scholar 

  • Fizelova A, Fizel A (1972) Myocardial metabolic changes in cardiac hypertrophy and heart failure. Recent Adv Stud Cardiac Struct Metab 1:200–212

    PubMed  CAS  Google Scholar 

  • Fleckenstein A (1971) Pathophysiologische Kausalfaktoren bei Myokardnekrose und Infarkt. Wien Z Inn Med 52:133–143

    PubMed  CAS  Google Scholar 

  • Gallop P, Paz M (1975) Posttranslational protein modifications, with special attention to collagen and elastin. Physiol Rev 55:418–487

    PubMed  CAS  Google Scholar 

  • Gamulin S, Naracsik P (1978) Alteration of hepatic polyribosome structure and function in mice during hypothermia. Exp Mol Pathol 28:372–380

    PubMed  CAS  Google Scholar 

  • Geary S, Florini J (1972) Effect of age on rate of protein synthesis in isolated perfused mouse hearts. J Gerontol 27:325–332

    PubMed  CAS  Google Scholar 

  • Gibson K, Harris P (1972a) The effect of pulmonary constriction on myocardial aminoacyl-tRNA synthetase and transferring enzyme activity. J Mol Cell Cardiol 4:381–390

    CAS  Google Scholar 

  • Gibson K, Harris P (1972b) Effects of hypobaric oxygenation, hypertrophy and diet on some myocardial cytoplasmic factors concerned with protein synthesis. J Mol Cell Cardiol 4:651–660

    CAS  Google Scholar 

  • Gibson K, Harris P (1973) The effects of diphtheria toxin on guinea pig myocardial protein synthesis. J Mol Cell Cardiol 5:185–190

    PubMed  CAS  Google Scholar 

  • Gibson K, Harris P (1976) The effects of polyamines on cardiac protein biosynthesis. Recent Adv Stud Cardiac Struct Metab 7:71–76

    CAS  Google Scholar 

  • Gilbert W, Dressler D (1968) DNA replication: The rolling circle model. Cold Spring Harbor Symp Quant Biol 33:473–484

    PubMed  CAS  Google Scholar 

  • Gillette P, Claycomb W (1974) Thymidine kinase activity in cardiac muscle during embryonic and postnatal development. Biochem J 142:685–690

    PubMed  CAS  Google Scholar 

  • Giloh H, Schochot L, Mager J (1975) Inhibition of peptide chain initiation in lysates from ATP-depleted cells. Biochim Biophys Acta 414:293–320

    PubMed  CAS  Google Scholar 

  • Giovanetti P, Stothers S (1975) Influence of diet and age on ribonucleic acid, protein and free amino acid levels of rat skeletal muscle. Growth 39:1–16

    Google Scholar 

  • Grove K, Zak R, Nair K, Aschenbrenner V (1969) Biochemical correlates of cardiac hypertrophy: IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat. Circ Res 25:473–485

    PubMed  CAS  Google Scholar 

  • Gudbjarnason S, Telerman M, Bing R (1964) Protein metabolism in cardiac hypertrophy and heart failure. Am J Physiol 206:294–298

    PubMed  CAS  Google Scholar 

  • Hagopian M, Anversa P, Loud A (1975) Quantitative radioautographic localization of newly synthesized protein in the postnatal rat heart. J Mol Cell Cardiol 7:357–367

    PubMed  CAS  Google Scholar 

  • Halbreich A, Rabinowitz M (1971) Isolation of saccharomyces cerevisiae mitochondrial formyltetrahydrofolic acid: Methionyl-tRNA transformylase and the hybridization of mitochondrial fMet-tRNA with mitochondrial DNA. Proc Natl Acad Sci USA 68:294–298

    PubMed  CAS  Google Scholar 

  • Hammond G, Wieben E, Markert C (1979) Molecular signals for initiating protein synthesis in organ hypertrophy. Proc Natl Acad Sci USA 76:2455–2459

    PubMed  CAS  Google Scholar 

  • Hearse D, Chain E (1972) The role of glucose in the survival and recovery of the anoxic isolated perfused rat heart. Biochem J 128:1125–1133

    PubMed  CAS  Google Scholar 

  • Hearse D, Humphrey S, Feuvray D, DeLeiris J (1976) A biochemical and ultrastructural study of the species variation in myocardial call damage. J Mol Cell Cardiol 8:759–778

    PubMed  CAS  Google Scholar 

  • Hedden M, Buse M (1979) General stimulation of muscle protein synthesis by branched chain amino acids in vitro. Proc Soc Exp Biol Med 160:410–415

    PubMed  CAS  Google Scholar 

  • Heinrich P, Gross V, Northemann W, Scheurlen M (1978) Structure and function of nuclear ribonucleoprotein complexes. Rev Physiol Biochem Pharmacol 81:102–134

    Google Scholar 

  • Henderson C, Frei E (1980) Adriamycin cardiotoxicity. Am Heart J 99:671–674

    PubMed  CAS  Google Scholar 

  • Henney A, Parker D, Davies M (1980) Estimation of protein and DNA synthesis in allograft organ cultures as a measure of cell viability. Cardiovasc Res 14:154–160

    PubMed  CAS  Google Scholar 

  • Herdson P, Kaltenbach J, Jennings R (1969) Fine structural and biochemical changes in dog myocardium during autolysis. Am J Pathol 57:539–557

    PubMed  CAS  Google Scholar 

  • Hew C, Yip C (1976) Biosynthesis of polypeptide hormones. Can J Biochem 54:592–599

    Google Scholar 

  • Hibbs R, Ferrans V, Black W, Weilbacher D, Walsh J, Burch G (1965) Alcoholic cardiomyopathy. Am Heart J 69:766–779

    PubMed  CAS  Google Scholar 

  • Hinterberger U (1974) EinfluĂź totaler Ischämie auf Ribosomen und Zytosolfaktoren des Rattenmyocards. Acta Biol Med Ger 32:181–192

    PubMed  CAS  Google Scholar 

  • Hirsch M, Penman S (1973) Mitochondrial polyadenylic acid-containing RNA: Localisation and characterization. J Mol Biol 80:379–391

    PubMed  CAS  Google Scholar 

  • Hjalmarson A, Ranneis D, Kao R, Morgan H (1975) Effects of hypophysectomy, growth hormone, and thyroxine on protein turnover in heart. J Biol Chem 250:4556–4561

    PubMed  CAS  Google Scholar 

  • Hollenberg G, Borst P, Thuring R, Van Bruggen E (1969) Size, structure and genetic complexity of yeast mitochondrial DNA. Biochim Biophys Acta 186:417–419

    PubMed  CAS  Google Scholar 

  • Hunt T, Hunter T, Munro A (1969) Control of haemoglobin synthesis: Rate of translation of the messenger RNA for the α and β chains. J Mol Biol 43:123–133

    PubMed  CAS  Google Scholar 

  • Hunt T, Vanderhoff G, London I (1972) Control of globin synthesis: The role of heme. J Mol Biol 66:471–481

    PubMed  CAS  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanism in the synthesis of proteins. J Mol Biol 3:318–356

    PubMed  CAS  Google Scholar 

  • Jain S, Roy R, Pluskal M, Croall D, Guha C, Sarkar S (1979) A model of translational control involving mRNA associated proteins in chick embryonic muscles. Mol Biol Rep 5:79–85

    PubMed  CAS  Google Scholar 

  • Jefferson L, Wolpert E, Giger K, Morgan H (1971) Regulation of protein synthesis in heart muscle. J Biol Chem 246:2171–2178

    PubMed  CAS  Google Scholar 

  • Jefferson L, Koehler S, Morgan H (1972) Effect of insulin on protein synthesis in skeletal muscle of an isolated perfused preparation of rat hemi corpus. Proc Natl Acad Sci USA 69:816–820

    PubMed  CAS  Google Scholar 

  • Jefferson L, Rannels D, Munger B, Morgan H (1974) Insulin in the regulation of protein turnover in heart and skeletal muscle. Fed Proc 33:1098–1104

    PubMed  CAS  Google Scholar 

  • Johnson L, Johnson R, Strehler B (1975) Cardiac hypertrophy, aging and changes in cardiac ribosomal RNA gene dosage in man. J Mol Cell Cardiol 7:125–133

    PubMed  CAS  Google Scholar 

  • Kagen L, Linder S (1969) Synthesis of myoglobin by muscle polysomes. Biochim Biophys Acta 195:523–530

    PubMed  CAS  Google Scholar 

  • Kahn A, Cottreau D, Daegelen D, Dreyfus J (1981) Cell-free translation of messenger RNAs from adult and fetal human muscle. Eur J Biochem 373:1–22

    Google Scholar 

  • Kao R, Rannels D, Morgan H (1976a) Effects of anoxia and severe ischemia on the turnover of myocardial proteins. In: Hjalmarson A, Werko L (eds) Experimental and clinical aspects on preservation of the ischemic myocardium. University of Göteborg, Sweden, pp 117–122

    Google Scholar 

  • Kao R, Rannels D, Morgan H (1976b) Effects of anoxia and ischemia on protein synthesis in perfused rat hearts. Circ Res 38/1:124–130

    Google Scholar 

  • Kao R, Rannels D, Whitman V, Morgan H (1978) Factors accounting for growth and atrophy of the heart. In: Kobayashi T, Ito J, Rona G (eds) Recent advances in studies on cardiac growth and metabolism. University Park Press, Baltimore/USA, pp 105–113

    Google Scholar 

  • Kaplan E, Richman H (1973) Calcium enhancement of protein synthesis in rat heart ventricles. Can J Biochem 51:1331–1334

    CAS  Google Scholar 

  • Kasamatsu H, Grossman L, Robberson D, Watson R, Vinograd J (1974) The replication and structure of mitochondrial DNA in animal cells. Cold Spring Harbor Symp Quant Biol 38:281–288

    PubMed  CAS  Google Scholar 

  • Katz A, Messineo F (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48:1–16

    PubMed  CAS  Google Scholar 

  • Katzberg A, Farmer B, Harris R (1977) Predominance of binucleation in isolated rat heart myocytes. Am J Anat 149:489–500

    PubMed  CAS  Google Scholar 

  • Kivirikko K, Risteli L (1976) Biosynthesis of collagen and its alterations in pathological states. Med Biol 54:159–186

    PubMed  CAS  Google Scholar 

  • Kleitke B, Hinterberger U, Onnen K, Rabitzsch G, Wollenberger A (1973) Der EinfluĂź von totaler Ischämie auf die Ribonukleinsäure- und EiweiĂźsynthese im Herzmuskel der Ratte, untersucht an Schnitten und zellfreien Systemen. Acta Biol Med Ger 30:33–55

    PubMed  CAS  Google Scholar 

  • Knieriem H (1978) 1. Morphologic changes of the myocardium induced by different toxic agents. In: Kaltenbach M, Loogen F, Olsen E (eds) Cardiomyopathy and myocardial biopsy. Springer, Berlin Heidelberg New York, pp 2–11

    Google Scholar 

  • Korecky B, Rakusan K (1973) Dimensions of cardiac muscle cells during the life span of rat. Physiologist 16:366

    Google Scholar 

  • Kuhn H, Loogen F (1978) Die Wirkung von Alkohol auf das Herz einschlieĂźlich der Alkoholkardiomyopathie. Internist 19:97–106

    PubMed  CAS  Google Scholar 

  • Laks M, Morady F, Swan H (1969) Canine right and left ventricular cell and sarcomere length after banding of the pulmonary artery. Circ Res 24:705–710

    PubMed  CAS  Google Scholar 

  • Lamers J, Stinis J, Kort W, HĂĽlsmann W (1978) Biochemical studies on the sarcolemmal function in the hypertrophied rabbit heart. J Mol Cell Cardiol 10:235–248

    PubMed  CAS  Google Scholar 

  • Lenaz L, Page J (1976) Cardiotoxicity of adriamycin and related anthracyclines. Cancer Treat Rev 3:111–120

    PubMed  CAS  Google Scholar 

  • Lenz J, Chatterjee G, Maroney P, Baglioni C (1978) Phosphorylated sugars stimulate protein synthesis and Met-tRNAf binding activity in extracts of mammalian cells. Biochemistry 17:80–87

    PubMed  CAS  Google Scholar 

  • Lesch M, Peterson M (1975) Studies on the anoxic inhibition of myocardial protein synthesis. Recent Adv Stud Cardiac Struct Metab 8:101–115

    PubMed  CAS  Google Scholar 

  • Liere E Van, Sizemore D (1971) Regression of cardiac hypertrophy following experimental hyperthyroidism in rats. Proc Soc Exp Biol Med 136:645–648

    PubMed  Google Scholar 

  • Lingrel J, Borsook H (1963) A comparison of amino acid incorporation into the hemoglobin and ribosomes of marrow erythroid cells and circulating reticulocytes of severely anemic rabbits. Biochemistry 2:309–314

    CAS  Google Scholar 

  • Linzbach A (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382

    PubMed  CAS  Google Scholar 

  • Linzbach J (1967) Funktionelle Morphologie der chronischen Herzinsuffizienz. Verh Deutsch Ges Pathol 51:124–138

    CAS  Google Scholar 

  • Lochner A, Brink A, Bester A (1973) Nucleic acid synthesis in myocardial ischaemia and infarction. J Mol Cell Cardiol 5:301–309

    PubMed  CAS  Google Scholar 

  • Lodish H, Jacobsen M (1972) Regulation of hemoglobin synthesis. J Biol Chem 247:3622–3629

    PubMed  CAS  Google Scholar 

  • Maizel J (1971) Polyacrylamide gel electrophoresis of viral proteins. In: Maramorosch K, Koprowski H (eds) Methods in virology, vol 5. Academic Press, New York, pp 179–246

    Google Scholar 

  • Majchrowicz E, Mendelson J (1970) Blood concentration of acetaldehyd and ethanol in chronic alcoholics. Science 168:1100–1102

    PubMed  CAS  Google Scholar 

  • Manchester K, Wool J (1963) Insulin and incorporation of amino acids into protein muscle. I. Accumulation and incorporation studies with the perfused rat heart. Biochem J 89:202–209

    PubMed  CAS  Google Scholar 

  • Mason D, Neri Serneri G, Oliver M (eds) (1979) Myocardial infarction, vols I and II. Excerpta Medica, Amsterdam Oxford Princeton

    Google Scholar 

  • Masse M, Haray J (1974) Role of cell division in the cytodifferentiation of rat heart cells in culture. Biochimie 56:1581–1585

    PubMed  CAS  Google Scholar 

  • Matsushita S, Sogani R, Raben M (1972) Ornithine decarboxylase in cardiac hypertrophy in the rat. Circ Res 31:699–709

    PubMed  CAS  Google Scholar 

  • Maundrell K, Maxwell E, Civelli O, Vincent A, Goldenberg S, Buri J, Imaizumi-Scherrer M, Scherrer K, (1979) Messenger ribonucleoprotein complexes in avian erythroblasts: Carriers of post-transcriptional regulation? Mol Biol Rep 5:1–2, 43–51

    Google Scholar 

  • McFarlane A (1975) Available techniques for the study of protein synthesis. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 17–24

    Google Scholar 

  • Meerson F (1975) Role of synthesis of nucleic acids and protein in adaptation to the external environment. Phys Rev 55:79–123

    CAS  Google Scholar 

  • Meerson F, Breger A (1977) The common mechanism of the heart’s adaptation and deadaptation: hypertrophy and atrophy of the heart muscle. Basic Res Cardiol 72:228–234

    PubMed  CAS  Google Scholar 

  • Meerson F, Pomoinitsky V (1972) The role of high-energy phosphate compounds in the development of cardiac hypertrophy. J Mol Cell Cardiol 4:571–597

    PubMed  CAS  Google Scholar 

  • Meerson F, Javitz M, Breger A, Lerman M (1974) The mechanism of the heart’s adaptation to prolonged load and dynamics of RNA synthesis in the myocardium. Basic Res Cardiol 69:484–499

    PubMed  CAS  Google Scholar 

  • Meerson F, Javich M, Lerman M (1978) Decrease in the rate of RNA and protein synthesis and degradation in the myocardium under long-term compensatory hyper-function and on aging. J Mol Cell Cardiol 10:145–159

    PubMed  CAS  Google Scholar 

  • Metafora S, Felsani A, Cotrufo R, Tajana G, Iorio G, Del Rio A, DePrisco P, Esposito V (1980a) Neural control of gene expression in the skeletal muscle fibre: the nature of the lesion in the muscular protein-synthesizing machinery following denervation. Proc R Soc Lond [Biol] 209:239–255

    CAS  Google Scholar 

  • Metafora S, Felsani A, Cotrufo R, Tajana G, Del Rio A, De Prisco P, Rutigliano B, Esposito V (1980b) Neural control of gene expression in the skeletal muscle fibre: changes in the muscular mRNA population following denervation. Proc R Soc Lond [Biol] 209:257–273

    CAS  Google Scholar 

  • Millward D (1975) Diet and protein metabolism in skeletal muscle. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 203–231

    Google Scholar 

  • Mondal H, Sutton A, Chen V, Sarkar S (1974) Highly purified mRNA for myosin heavy chain: Size and polyadenylic acid content. Biochem Biophys Res Commun 56:988–996

    PubMed  CAS  Google Scholar 

  • Morgan H, Rannels D (1975) The control of protein turnover in the isolated perfused rat heart. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 233–246

    Google Scholar 

  • Morgan H, Earl D, Broadus A, Wolpert E, Giger K, Jefferson L (1971a) Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J Biol Chem 246:2152–2162

    CAS  Google Scholar 

  • Morgan H, Jefferson L, Wolpert E, Ranneis D (1971b) Regulation of protein synthesis in heart muscle. II. Effect of amino acid levels and insulin on ribosomal aggregation. J Biol Chem 246:2163–2170

    CAS  Google Scholar 

  • Morgan H, Rannels D, Kao R (1974) Factors controlling protein turnover in heart muscle. Circ Res [Suppl III] 34:22–31

    Google Scholar 

  • Morkin E (1974) Activation of synthetic processes in cardiac hypertrophy. Circ Res [Suppl II] 34:37–48

    Google Scholar 

  • Morkin E, Ashford T (1968) Myocardial DNA synthesis in experimental cardiac hypertrophy. Am J Physiol 215:1409–1413

    PubMed  CAS  Google Scholar 

  • Morkin E, Kimata S, Skillman J (1972) Myosin synthesis and degradation during development of cardiac hypertrophy in the rabbit. Circ Res 30:690–702

    PubMed  CAS  Google Scholar 

  • Morris G, Buzash E, Rourke A, Tepperman K, Thompson W, Heywood S (1972) Myosin messenger RNA: Studies on its purification, properties and translation during myogenesis in culture. Cold Spring Harbour Symp Quant Biol 37:535–541

    Google Scholar 

  • Mueller A, Griffin W, Wildenthal K (1977) Isoproterenol-induced cardiomyopathy: Changes in cardiac enzymes and protection by methylprednisolone. J Mol Cell Cardiol 9:565–578

    PubMed  CAS  Google Scholar 

  • Munro H (1970) Factors in regulation of liver protein synthesis. In: Rothschild M, Waldmann T (eds) Plasma protein metabolism. Academic Press, New York London, pp 157–167

    Google Scholar 

  • Munro H, Steinert P (1975) The intracellular organisation of protein synthesis. In: Amstein (ed) Synthesis of amino acids and protein. MTP International Review of Science, Biochemistry Series I, vol 7. HRV, pp 359–404

    Google Scholar 

  • Munro H, McLean E, Hird H (1964) Effect of protein intake on the ribonucleic acid of liver cell sap. J Nutr 83:186–192

    PubMed  CAS  Google Scholar 

  • Munro H, Hubert C, Baliga B (1975) Regulation of protein synthesis in relation to amino acid supply — a review. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis — biochemical and clinical. Pergamon Press, New York Toronto Oxford Sidney Braunschweig, pp 33–66

    Google Scholar 

  • Murty C, Verney E, Sidransky H (1980) Acute effect of ethanol on membranes of the endoplasmic reticulum and on protein synthesis in rat liver. Alcoholism (NY) 4:93–103

    CAS  Google Scholar 

  • Nakano K (1978) Function of dietary protein, carbohydrate and fat on in vitro protein synthesis in skeletal muscle of rats. Nutrition Rep International 18:453–464

    CAS  Google Scholar 

  • Nakano K, Hara H (1979) Insulin dependent and independent actions of dietary protein on in vitro protein synthesis in skeletal muscle of rats. J Nutrition 109:1390–1398

    CAS  Google Scholar 

  • Narayanan N, Eapen J (1973a) Cell-free synthesis of myosin by cardiac myofibrillar ribosomes. Biochem Biophys Res Commun 55:508–514

    CAS  Google Scholar 

  • Narayanan N, Eapen J (1973b) Protein synthesis by rat cardiac muscle myofibrils. Biochim Biophys Acta 512:413–425

    Google Scholar 

  • Narayanan N, Eapen J (1975) Age related changes in the incorporation of (14C)Leucine into myofibrillar and sarcoplasmic proteins of red and white muscles of chicks. Aust J Exp Biol Med Sci 53:59–63

    PubMed  CAS  Google Scholar 

  • Nass M, Buck C (1970) Studies of mitochondrial tRNA from animal cells. J Mol Biol 54:187–198

    PubMed  CAS  Google Scholar 

  • Nomura M, Tissieres A, Lengyel P (eds) (1974) Ribosomes. Cold Spring Harbor Laboratory, New York, p 930

    Google Scholar 

  • Nutter D, Murray T, Heymsfield S, Fuller E (1979) The effect of chronic protein-calorie undernutrition in the rat on myocardial function and cardiac function. Circ Res 45:144–152

    PubMed  CAS  Google Scholar 

  • O’Hara D, Curfman G, Trumbull C, Smith T (1981) A procedure for measuring the contributions of intracellular and extracellular tyrosine pools to the rate of myocardial protein synthesis. J Mol Cell Cardiol 13:925–940

    PubMed  Google Scholar 

  • Okazaki K, Holtzer H (1966) Myogenesis: Fusion, Myosin synthesis and the mitotic cycle. Proc Natl Acad Sci USA 56:1484–1490

    PubMed  CAS  Google Scholar 

  • Olivares J, Ray A, Aussedat J, Verdys M, Rossi A (1980) Increased myocardial pyrimidine nucleotide synthesis in isoproterenol-induced cardiac hypertrophy in rats. Biochem Biophys Res Commun 95:367–373

    PubMed  CAS  Google Scholar 

  • Oratz M, Rothschild M (1975) The influence of alcohol and altered nutrition on albumin synthesis. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford, pp 343–372

    Google Scholar 

  • Ouellette A, Kumar A, Malt R (1976) Physical aspects and cytoplasmic distribution of messenger RNA in mouse kidney. Biochim Biophys Acta 425:384–395

    PubMed  CAS  Google Scholar 

  • Page E, Polimeni P, Zak R, Early J, Johnson M (1972) Myofibrillar mass in rat and rabbit heart muscle. Circ Res 30:430–439

    PubMed  CAS  Google Scholar 

  • Page E, Early J, Power B (1974) Normal growth of ultrastructures in rat left ventricular myocardial cells. Circ Res [Suppl II] 34/35:12–16

    Google Scholar 

  • Pain V, Levis J, Huvos P, Henshaw E, Clemens M (1980) The effects of amino acid starvation on regulation of polypeptide chain initiation in Ehrlich ascites tumor cells. J Biol Chem 255:1486–1491

    PubMed  CAS  Google Scholar 

  • Palade G (1958) Microsomal particles and protein synthesis. In: First Symposium of Biophysical Society. Pergamon, Elmsford/NY

    Google Scholar 

  • Palade G, Siekevitz P (1956) Liver microsomes. J Biophys Biochem Cytol 2:171–200

    PubMed  CAS  Google Scholar 

  • Palmiter R (1973) Ovalbumin messenger ribonucleic acid translation. J Biol Chem 248:2095–2106

    PubMed  CAS  Google Scholar 

  • Palmiter R (1975) Quantitation of parameters that determine the rate of ovalbumin synthesis. Cell 4:189–197

    PubMed  CAS  Google Scholar 

  • Perlman S, Abelson H, Penman S (1973) Mitochondrial protein synthesis: RNA with the properties of eukaryotic messenger RNA. Proc Natl Acad Sci USA 70:350–353

    PubMed  CAS  Google Scholar 

  • Perry R (1976) Processing of RNA. Annu Rev Biochem 45:605–629

    PubMed  CAS  Google Scholar 

  • Peters T (1977) Intracellular albumin transport. In: Rosenoer V, Oratz M, Rothschild M (eds) Albumin structure, function and uses. Pergamon Press, Oxford New York, pp 305–332

    Google Scholar 

  • Peterson M, Ferguson A, Lesch M (1973) A method for the determination of amino acid incorporation into protein and the specific activity of tissue amino acid in small cardiac muscle samples. J Mol Cell Cardiol 5:547–552

    PubMed  CAS  Google Scholar 

  • Peterson M, Mead R, Welty J (1974) Protein and free amino acid metabolism in the failing canine heart. In: Dhalla N, Winnipeg F (eds) Myocardial metabolism. Urban & Schwarzenberg, MĂĽnchen Berlin Wien, pp 615–623

    Google Scholar 

  • Piko L, Matsumoto L (1977) Complex forms and replicative intermediates of mitochondrial DNA in tissues from adult and senescent mice. Nucleic Acids Res 4:1301–1314

    PubMed  CAS  Google Scholar 

  • Pool P, Braunwald E (1968) Fundamental mechanisms in congestive heart failure. Am J Cardiol 22:7–15

    PubMed  CAS  Google Scholar 

  • Przybyla A, Strohman R (1974) Myosin heavy chain messenger RNA from myogenic cell cultures. Proc Natl Acad Sci USA 71:662–666

    PubMed  CAS  Google Scholar 

  • Rabinowitz M (1973) Protein synthesis and turnover in normal and hypertrophied heart. Am J Cardiol 31:202–210

    PubMed  CAS  Google Scholar 

  • Rabinowitz M (1974) Overview on pathogenesis of cardiac hypertrophy. Circ Res [Suppl II] 34/35:3–11

    Google Scholar 

  • Rabinowitz M, Zak R (1972) Biochemical and cellular changes in cardiac hypertrophy. Annu Rev Med 23:245–262

    PubMed  CAS  Google Scholar 

  • Rabinowitz M, Zak R (1975) Mitochondria and cardiac hypertrophy. Circ Res 36:367–376

    PubMed  CAS  Google Scholar 

  • Raina A, Janne J (1975) Physiology of the natural polyamines putrescine, spermidine and spermine. Med Biol 53(3):121–147

    PubMed  CAS  Google Scholar 

  • Rajamanickam C, Merten S, Kwiatkowska-Patzer B, Chuang C, Zak R, Rabinowitz M (1979) Changes in mitochondrial DNA in cardiac hypertrophy in the rat. Circ Res 45:505–515

    PubMed  CAS  Google Scholar 

  • Rannels D, Kao R, Morgan H (1975) Effect of insulin on protein turnover in heart muscle. J Biol Chem 250:1694–1701

    PubMed  CAS  Google Scholar 

  • Rannels D, Kao R, Morgan H (1977) Protein synthesis and degradation during ischemia. In: Lefer A, Kelliher G, Rovetto M (eds) Pathophysiology and therapeutics of myocardial ischemia. Spectrum, New York, pp 149–168

    Google Scholar 

  • Rannels D, Pegg A, Rannels S, Jefferson L (1978) Effect of starvation on initiation of protein synthesis in skeletal muscle and heart. Am J Physiol 235:126–133

    Google Scholar 

  • Ravid K, Diamant P, Avi-Dor Y (1980) Glucose-dependent stimulation of protein synthesis in cultured heart muscle cells. FEBS Lett 119:20–24

    PubMed  CAS  Google Scholar 

  • Rawat A (1979) Inhibition of cardiac protein synthesis by prolonged ethanol administration. Res Commun Chem Pathol Pharmacol 25:89–102

    PubMed  CAS  Google Scholar 

  • Regan T (1975) Metabolic adaption to alcohol in the heart. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford, pp 247–271

    Google Scholar 

  • Regan T, Ettinger P, Haider B, Ahmed S, Oldewurtel H, Lyons M (1977) The role of ethanol in cardiac disease. Annu Rev Med 28:393–409

    PubMed  CAS  Google Scholar 

  • Reindell H, Kindermann W, Dickhuth H, Simon G (1978) Das Sportherz. In: BlĂĽmchen G (Hrsg) Beiträge zur Geschichte der Kardiologie. Pharma-Schwarz, Monheim, S 87–110

    Google Scholar 

  • Richter D, Isono K (1977) The mechanism of protein synthesis-initiation, elongation and termination in translation of genetic messages. In: Curr Top Microbiol Immunol 76:83–125

    CAS  Google Scholar 

  • Riecker G (1982) Klinische Kardiologie, 2. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Robberson D, Aloni Y, Attardi G, Davidson N (1971) Expression of the mitochondrial genome in HeLa-cells. VI. Size determination of mitochondrial ribosomal RNA by electron microscopy. J Mol Biol 60:473–484

    PubMed  CAS  Google Scholar 

  • Rona G, Chappel C, Balazs T, Gandry R (1959) An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch Pathol 67:443–455

    CAS  Google Scholar 

  • Rothschild M, Schreiber S, Oratz M (1975) Effects of ethanol on protein synthesis. Adv Exp Med Biol 56:179–194

    PubMed  CAS  Google Scholar 

  • Rothschild M, Oratz M, Schreiber S (1977) Albumin synthesis. In: Rosenoer V, Oratz M, Rothschild M (eds) Albumin, structure, function, uses. Pergamon Press, Oxford pp 228–253

    Google Scholar 

  • Rubin E (1979) Alcoholic myopathy in heart and skeletal muscle. New Engl J Med 301:28–33

    PubMed  CAS  Google Scholar 

  • Rubin E, Beattie D, Lieber C (1970) Effects of ethanol on the biogenesis of mitochondrial membranes and associated mitochondrial functions. Lab Invest 23:620–627

    PubMed  CAS  Google Scholar 

  • Rumyantsev P, Snigirevskaya E (1968) Ultrastructure of differentiating cells of the heart muscle in the state of mitotic division. Acta Morphol Acad Sci Hung 16:271–283

    PubMed  CAS  Google Scholar 

  • Russel D, Shiverick K, Hamrell B, Alpert N (1971) Polyamine synthesis during initial phases of stress-induced cardiac hypertrophy. Am J Physiol 221:1287–1291

    Google Scholar 

  • Sandritter W (1977) Wie das Herz Muskelmasse auf- und abbaut. In: 8th Intern Meeting Intern Study Group for Research in Cardiac Metabolism, Tokio, May 76. Vgl auch Selecta 3:153–165

    Google Scholar 

  • Sanford C, Griffin E, Wildenthal K (1978) Synthesis and degradation of myocardial protein during the development and regression of thyroxine-induced cardiac hypertrophy in rats. Circ Res 43:688–694

    PubMed  CAS  Google Scholar 

  • Sanger F (1981) Determination of nucleotide sequences in DNA. Biosci Rep 1:3–18

    PubMed  CAS  Google Scholar 

  • Sarma J, Ikeda S, Fischer R, Maruyama Y, Weishaar R, Bing R (1976) Biochemical and contractile properties of heart muscle after prolonged alcohol administration. J Mol Cell Cardiol 8:951–972

    PubMed  CAS  Google Scholar 

  • Schatz G, Böhm P, Gasser S, Lewin A, Ohashi A, Suissa M (1981) Import of proteins into mitochondria. Biochem Soc Trans 9:52

    Google Scholar 

  • Scherrer K, Imaizumi-Scherrer M, Reynaud C, Therwath A (1979) On pre-messenger RNA and transcriptions a review. Molec Biol Rep 5:1–2, p 5–28

    Google Scholar 

  • Schreiber G, Urban J (1978) The synthesis and secretion of albumin. Rev Physiol Biochem Pharmacol 82:27–29

    PubMed  CAS  Google Scholar 

  • Schreiber G, Urban J, Zähringer J, Reutter W, Frosch U (1971) The secretion of serum protein and the synthesis of albumin and total protein in regenerating rat liver. J Biol Chem 246:4531–4538

    PubMed  CAS  Google Scholar 

  • Schreiber S (1975) Stress and myocardial protein synthesis: The effect of alcohol and acetaldehyde. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 273–290

    Google Scholar 

  • Schreiber S, Oratz M, Rothschild M (1966) Protein synthesis in the overloaded mammalian heart. Am J Physiol 211:314–318

    PubMed  CAS  Google Scholar 

  • Schreiber S, Klein I, Oratz M, Rotschild M (1971) Adenyl cyclase activity and cyclic AMP in acute cardiac overload: a method for measuring cyclic AMP production based on ATP specific activity. J Mol Cell Cardiol 2:55–65

    PubMed  CAS  Google Scholar 

  • Schreiber S, Briden K, Oratz M, Rothschild M (1972) Ethanol Acetaldehyde and myocardial protein synthesis. J Clin Invest 51:2820–2826

    PubMed  CAS  Google Scholar 

  • Schreiber S, Oratz M, Klein I, Rothschild M (1974a) Protein degradation in acute cardiac loading: The problem of reutilization of amino acids. Recent Adv Stud Cardiac Struct Metab 3:589–601

    Google Scholar 

  • Schreiber S, Oratz M, Rothschild M, Reff F, Evans C (1974b) Alcoholic cardiomyopathy. II. The inhibition of cardiac microsomal protein synthesis by acetaldehyd. J Mol Cell Cardiol 6:207–213

    CAS  Google Scholar 

  • Schreiber S, Evans C, Oratz M, Rothschild M (1982) Problems in evaluating cardiac protein synthesis. J Mol Cell Cardiol 14:307–312

    PubMed  CAS  Google Scholar 

  • Schrey A (1980). Die koronare Herzkrankheit. Urban & Schwarzenberg, MĂĽnchen Wien Baltimore

    Google Scholar 

  • SchultheiĂź P, Bolte H, Cyran J (1979) Enzymbestimmungen in Myocardbiopsien zur Unterscheidung zwischen der kongestiven Kardiomyopathie unklarer Ă„tiologie (COCM) und der Alkoholkardiomyopathie (ACM). Verh Dtsch Ges Inn Med 85:868–872

    Google Scholar 

  • Scornik O (1974) In-vivo rate of translation by ribosome of normal and regenerating liver. J Biol Chem 249:3876–3883

    PubMed  CAS  Google Scholar 

  • Shafritz D, Yap S, Strair R (1979) Regulation of albumin synthesis in rat liver. Molec Biol Rep 5:1–2, 71–78

    Google Scholar 

  • Shanoff H (1972) Alcoholic cardiomyopathy: An introductory review. Can Med Assoc J 106:55–62

    PubMed  CAS  Google Scholar 

  • Sherton C, Wool I (1972) Determination of the number of proteins in liver ribosomes and ribosomal subunits by two-dimensional polyacrylamide gel electrophoresis. J Biol Chem 247:4460–4467

    PubMed  CAS  Google Scholar 

  • Shlafer M, Gelband H, Sung R, Palmer R, Bassett A (1978) Time-dependent alterations of myocardial microsomal yield and calcium accumulation in experimentally-induced right ventricular hypertrophy and failure. J Mol Cell Cardiol 10:395–407

    PubMed  CAS  Google Scholar 

  • Shore G, Tata J (1977) Functions for polyribosome-membrane interactions in protein synthesis. Biochim Biophys Acta 472:197–236

    PubMed  CAS  Google Scholar 

  • Short F (1969) Protein synthesis by red and white muscle in vitro: effect of insulin and animal age. Am J Physiol 217:307–309

    PubMed  CAS  Google Scholar 

  • Spirin A (1979) Messenger ribonucleoproteins (informosomes) and RNA-binding proteins. Molec Biol Rep 5:53–57

    CAS  Google Scholar 

  • Srivastava Ăś (1969) Polyribosome concentration of mouse skeletal muscle as a function of age. Arch Biochem Biophys 130:129–139

    PubMed  CAS  Google Scholar 

  • Stevenin J, Jacob M (1979) Structure of pre-mRNP. Models and pitfalls. Molec Biol Rep 5:29–35

    CAS  Google Scholar 

  • Stotz E (1943) A colorimetric determination of acetaldehyde in blood. J Biol Chem 148:585–591

    CAS  Google Scholar 

  • Stringfellow C, Brachfeld N (1970) A study of transfer RNA, total RNA and protein interrelationships in control and stressed isolated perfused rat heart. J Mol Cell Cardiol 1:221–233

    PubMed  CAS  Google Scholar 

  • Suzuki T (1975) RNA content in the heart muscle cells following adrenalectomy and additional overload in the rat. Tohoku J Exp Med 115:239–245

    PubMed  CAS  Google Scholar 

  • Swynghedauw B, Schwartz K, Bercovici J, Bouveret P, Lompre A, Thiem N, Lacombe G (1980) Experimental systolic and diastolic overloading in rats: total protein turnover rate. Enzymatic and structural properties of myosin. Basic Res Cardiol 75:143–148

    PubMed  CAS  Google Scholar 

  • Takenaka F Higuchi M (1974) High-energy phosphate contents of subepicardium and subendocardium in the rat treated with isoproterenol and some other drugs. J Mol Cell Cardiol 6:123–135

    PubMed  CAS  Google Scholar 

  • Thomas A, Benne R, Voorma H (1981) Initiation of eukaryotic protein synthesis. FEBS Lett 128:177–185

    PubMed  CAS  Google Scholar 

  • Thompson R, Fitzharris T, Denslow S, LeRoy E (1979) Collagen synthesis in the developing chick heart. Tex Rep Biol Med 39:305–319

    PubMed  CAS  Google Scholar 

  • Tolnai S, Korecky B (1980) Lyosomal hydrolases in the heterotopically isotransplanted heart undergoing atrophy. J Mol Cell Cardiol 12:869–890

    PubMed  CAS  Google Scholar 

  • Tzagoloff A, Macino G, Sebald W (1979) Mitochondrial genes and translation products. Annu Rev Biochem 48:419–441

    PubMed  CAS  Google Scholar 

  • Wall R, Lippmann S, Toth K, Fedoroff N (1977) A general method for the large-scale isolation of poly somes and messenger RNA applied to MOPC 21 mouse myeloma tumors. Anal Biochem 82:115–129

    PubMed  CAS  Google Scholar 

  • Waterlow J, Garlick P (1975) Metabolic Adaptions to Protein Deficiency. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 67–94

    Google Scholar 

  • Watkins C, Morgan H (1979) Relationship between rates of methylation and synthesis of heart protein. J Biol Chem 254:693–701

    PubMed  CAS  Google Scholar 

  • Watson J, Crick F (1953) Molecular structure of nucleic acids. Nature 171:737–738

    PubMed  CAS  Google Scholar 

  • Weinstock I, Markiewicz L (1974) Muscle protein synthesis during development of the normal and dystrophic chicken. Biochim Biophys Acta 374:197–206

    PubMed  CAS  Google Scholar 

  • Wildenthal K (1973) Studies of foetal mouse hearts in organ culture: Metabolic requirements for prolonged function in vitro and the influence of cardiac maturation on substrate utilization. J Mol Cell Cardiol 5:87–99

    PubMed  CAS  Google Scholar 

  • Wildenthal K, MĂĽller E (1974) Increased myocardial cathepsin D activity during regression of thyrotoxic cardiac hypertrophy. Nature 249:478–479

    PubMed  CAS  Google Scholar 

  • Wildenthal K, MĂĽller E (1977) Lysosomal enzymes in the development and regression of myocardial hypertrophy induced by systemic hypertension. J Mol Cell Cardiol 9:121–130

    PubMed  CAS  Google Scholar 

  • Wildenthal K, Poole R, Dingle J (1975) Influence of starvation on the activities and localization of cathepsin D and other lysosomal enzymes in hearts of rabbits and mice. J Mol Cell Cardiol 7:841–855

    PubMed  CAS  Google Scholar 

  • Wintersberger E (1978) DNA-Replication in eukaryotes. Rev Physiol Biochem Pharmacol 84:93–142

    PubMed  CAS  Google Scholar 

  • Wollenberger A, Kleitke B (1974) Ribonucleic acid and protein synthesis in rat heart mitochondria isolated after aortic constriction, strenuous physical exercise, total myocardial ischemia, and theophylline treatment. Recent Adv Stud Cardiac Struct Metab 3:535–550

    Google Scholar 

  • Wool I (1979) The structure and function of eukaryotic ribosomes. Annu Rev Biochem 48:719–754

    PubMed  CAS  Google Scholar 

  • Wool I, Stirewalt W, Kurihara K, Low R, Bailey P, Oyer D (1968) Mode of action of insulin in the regulation of protein biosynthesis in muscle. Recent Prog Horm Res 24:139–213

    PubMed  CAS  Google Scholar 

  • Wulff V, Freshman M (1961) Age-related reduction of the RNA content of rat cardiac muscle and cerebellum. Arch Biochem Biophys 95:181–182

    PubMed  CAS  Google Scholar 

  • Zähringer J (1979) Die Regulation der Herzmuskelproteinsynthese. Klin Wochenschr 57:541–553

    PubMed  Google Scholar 

  • Zähringer J (1981a) The regulation of protein synthesis in heart muscle under normal conditions and in the adriamycin-cardiomyopathy. Klin Wochenschr 59:1273–1287

    Google Scholar 

  • Zähringer J (1981b) Genexpression und Proteinsynthese im normalen Herzmuskel und bei der Adriamycin-Kardiomyopathie. Habilitationsschrift, Ludwig-Maximilians-Universität MĂĽnchen

    Google Scholar 

  • Zähringer J, Höfling B (1980) Adriamycin-Cardiomyopathy: Changes in myocardial polyribosome and mRNA levels. In: Bolte H (ed) Myocardial biopsy. Springer, Berlin Heidelberg New York, pp 119–130

    Google Scholar 

  • Zähringer J, Kandolf R (1980) Isolation, subcellular distribution and in-vitro translation of myocardial mRNA and polyribosomes. Circulation [Suppl III] 62:114

    Google Scholar 

  • Zähringer J, Klaubert A (1982) The effect of triiodothyronine on the cardiac mRNA. J Mol Cell Cardiol 14:559–571

    PubMed  Google Scholar 

  • Zähringer J, Baliga B, Munro H (1976a) Subcellular distribution of total Poly(A)-containing RNA and ferritin-mRNA in the cytoplasm of rat liver. Biochem Biophys Res Commun 68:1088–1093

    Google Scholar 

  • Zähringer J, Baliga B, Munro H (1976b) Novel mechanism for translational control in the regulation of ferritin synthesis by iron. Proc Natl Acad Sci USA 73:857–861

    Google Scholar 

  • Zähringer J, Baliga B, Crim M, Munro H (1977a) Hepatic synthesis of export proteins. In: Rosenoer V, Oratz M, Rothschild M (eds) Albumin structure, function and use. Pergamon Press, Oxford New York Toronto, pp 203–225

    Google Scholar 

  • Zähringer J, Baliga B, Drake R, Munro H (1977b) Distribution of ferritin-mRNA and albumin-mRNA between free and membrane-bound rat liver polysomes. Biochim Biophys Acta 474:234–244

    Google Scholar 

  • Zähringer J, Baliga B, Munro H (1979) Relative abundance of specific messenger-RNA species in the free mRNP fraction of rat liver. FEBS Lett 108:317–320

    PubMed  Google Scholar 

  • Zähringer J, Höfling B, Raum W, Kandolf R (1980) Effect of adriamycin on the polyribosome and messenger-RNA content of rat heart muscle. Biochim Biophys Acta 608:315–323

    PubMed  Google Scholar 

  • Zähringer J, Raum W, Kandolf R, Troesch G, Stab G, Jäger E (1981a) Isolation and characterization of structurally and functionally intact polyribosomes and mRNA from rat heart muscle. J Mol Cell Cardiol 13:127–146

    Google Scholar 

  • Zähringer J, Kandolf R, Raum W (1981b) Decrease of myocardial messenger RNA in adriamycin-treated rats. FEBS Lett 123:169–172

    Google Scholar 

  • Zähringer J, Pritzl N, Stäb G (1982) Quantitation of cardiac polysomal mRNA by hybridization to (3H) Poly(U). J Mol Cell Cardiol 14:539–550

    PubMed  Google Scholar 

  • Zak R (1974) Development and proliferative capacity of cardiac muscle cells. Circ Res [Suppl II] 34/35:17–26

    Google Scholar 

  • Zak R (1977) Metabolism of myofibrillar proteins in the normal and hypertrophic heart. Basic Res Cardiol 72:235–240

    PubMed  CAS  Google Scholar 

  • Zak R, Rabinowitz M (1979) Molecular aspects of cardiac hypertrophy. Annu Rev Physiol 41:539–552

    PubMed  CAS  Google Scholar 

  • Zak R, Rabinowitz M, Platt C (1967) Ribonucleic acids associated with myofibrils. Biochemistry 6:2493–2499

    PubMed  CAS  Google Scholar 

  • Zak R, Martin A, Dowell R, Rabinowitz M (1974) Turnover of myocardial components in cardiac hypertrophy. Recent Adv Stud Cardiac Struct Metab 3:603–614

    Google Scholar 

  • Zak R, Martin A, Blough R (1979a) Assessment of protein turnover by use of radioisotopic tracers. Physiol Rev 59:407–447

    CAS  Google Scholar 

  • Zak R, Prior G, Rabinowitz M (1979b) Assessment of protein synthesis by the use of aminoacyl-tRNA as precursor. Methods Enzymol 59:310–321

    CAS  Google Scholar 

  • Zak R, Rabinowitz M, Rajamanickam C, Merten S, Kwiatkoska-Patzer B (1980) Mitochondrial proliferation in cardiac hypertrophy. Basic Res Cardiol 75:171–178

    PubMed  CAS  Google Scholar 

  • Zimmer H, Gerlach E (1977) Changes of myocardial adenine nucleotide and protein synthesis during development of cardiac hypertrophy. Basic Res Cardiol 72:241–246

    PubMed  CAS  Google Scholar 

  • Zimmer H, Trendelenburg C, Gerlach E (1972) Acceleration of adenine nucleotide synthesis de novo during development of cardiac hypertrophy. J Mol Cell Cardiol 4:279–282

    PubMed  CAS  Google Scholar 

  • Zimmer H, Steinkopff G, Ibel H, Koschine H (1980) Is the ATP decline a signal for stimulating protein synthesis in isoproterenol-induced cardiac hypertrophy? J Mol Cell Cardiol 12:421–426

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

G. Autenrieth R. Bayer D. W. Behrenbeck G. Biamino H.-D. Bolte F. Burkart W.-D. Bussmann J. Cyran E. Erdmann B. Heierli F. Krück Th. Linderer G. Rahlf G. Riecker R. Schröder G. Steinbeck B. E. Strauer K. O. Stumpe E. Uhlich J. Zähringer

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zähringer, J. (1984). Die Regulation der Proteinsynthese am normalen Herzen und unter pathologischen Bedingungen. In: Autenrieth, G., et al. Herzinsuffizienz. Handbuch der inneren Medizin, vol 9 / 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82183-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82183-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82184-4

  • Online ISBN: 978-3-642-82183-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics