Die Regulation der Proteinsynthese am normalen Herzen und unter pathologischen Bedingungen

  • J. Zähringer
Part of the Handbuch der inneren Medizin book series (INNEREN, volume 9 / 4)


Im Verlauf der Evolution wie auch der individuellen Ontogenese einzelner Säugetiere und des Menschen spielt die Anpassung des Herzmuskels an die jeweiligen Erfordernisse des Kreislaufs eine entscheidende Rolle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelman W, Ramirez A (1975) Alcoholic cardiovascular disease. In: Rothschild M, Oratz M, Schreiber S (eds) Alcoholic and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, p 459Google Scholar
  2. Abelson J (1979) RNA processing and the intervening sequence problem. Annu Rev Biochem 48:1035–1069PubMedGoogle Scholar
  3. Adler C, Sandritter W (1980) Alterations of substances (DNA, myoglobin, myosin, protein) in experimentally induced cardiac hypertrophy and under the influence of drugs (isoproterenol, cytostatics, Strophantin). Basic Res Cardiol 75:126–138PubMedGoogle Scholar
  4. Albin R, Dowell R, Zak R, Rabinowitz M (1973) Synthesis and degradation of mitochondrial components in hypertrophied rat heart. Biochem J 136:629–637PubMedGoogle Scholar
  5. Alexander C (1966) Idiopathic heart disease. I. Analysis of 100 cases, with special reference to chronic alcoholism. Am J Med 41:216Google Scholar
  6. Alexander C, Sekhri K, Nagasawa H (1977) Alcoholic cardiomyopathy in mice electron microscopic observations. J Mol Cell Cardiol 9:247–254PubMedGoogle Scholar
  7. Aloni Y, Attardi G (1971) Symmetrical in-vivo transcription of mitochondrial DNA in HeLa cells. Proc Natl Acad Sci USA 68:1757–1761PubMedGoogle Scholar
  8. Anversa P, Olivetti G, Melissari M, Loud A (1980) Stereological measurement of cellular and subcellular hypertrophy and hyperplasia in the papillary muscle of adult rat. J Mol Cell Cardiol 12:781–795PubMedGoogle Scholar
  9. Arnold H, Siddiqui M (1979) Control of embryonic development: Isolation and purification of chick heart myosin light chain mRNA and quantitation with a cDNA probe. Biochemistry 18:647–654PubMedGoogle Scholar
  10. Aschenbrenner V, Zak R, Cutilletta A, Rabinowitz M (1971) Effect of hypoxia on degradation of mitochondrial components in rat cardiac muscle. Am J Physiol 221:1418–1425PubMedGoogle Scholar
  11. Ashwell M, Work T (1970) The biogenesis of mitochondria. Annu Rev Biochem 39:251–290PubMedGoogle Scholar
  12. Aumont M, Bercovici J, Berson G, Leger J, Preteseille M, Swynghedauw B (1980a) The incorporation of radioactive lysine or tyrosine into cardiac and skeletal myofibrillar and non-myofibrillar contractile proteins. Biomedicine 32:139–143Google Scholar
  13. Aumont M, Ray A, Rossi A, Swynghedauw B (1980b) A technique for preparing non-degraded rRNA from adult mammalian isolated heart muscle cells. J Mol Cell Cardiol 12:409–413Google Scholar
  14. Austin S, Clemens M (1981) The regulation of protein synthesis in mammalian cells by amino acid supply. Biosci Rep 1:35–44PubMedGoogle Scholar
  15. Badeer H (1980) Adaptive growth of the heart in health and disease. International Medicine 1:15–19Google Scholar
  16. Baliga B, Pronczuk A, Munro H (1968) Regulation of polysome aggregation in a cell-free system through amino acid supply. J Mol Biol 34:199–218PubMedGoogle Scholar
  17. Baliga B, Zähringer J, Trachtenberg M, Moskowitz M, Munro H (1976) Mechanism of D-Amphetamine inhibition of protein synthesis. Biochim Biophys Acta 442:239–250PubMedGoogle Scholar
  18. Beller B, Mongillo S (1969) Inhibition of incorporation of leucine into myocardial proteins of the rat by antiarrhythmic agents. Circ Res 25:401–406PubMedGoogle Scholar
  19. Beznak M, Korecky B, Thomas G (1969) Regression of cardiac hyperthrophies of various origin. Can J Physiol Pharmacol 47:579–586PubMedGoogle Scholar
  20. Beznak M, French I, Garg V, Rajhathy I, Kako K (1974) Myocardial nucleic acid synthesis following constriction of the aorta in rats. Basic Res Cardiol 69:499–508PubMedGoogle Scholar
  21. Bing R (1965) Cardiac metabolism. Physiol Rev 45:171–213PubMedGoogle Scholar
  22. Birbeck M, Mercer E (1961) Cytology of cells which synthesize protein. Nature 189:558–560Google Scholar
  23. Bischoff R, Holtzer H (1969) Mitosis and the process of differentiation of myogenic cells in vitro. J Cell Biol 41:188–201PubMedGoogle Scholar
  24. Bishop S (1974) Effect of aortic stenosis on myocardial cell growth, hyperplasia, and ultrastructure in neonatal dogs. Recent Adv Stud Cardiac Struct Metab 3:637–656Google Scholar
  25. Bishop S, Hines P (1975) Cardiac muscle cytoplasmic and nuclear development during canine neonatal growth. Recent Adv Stud Cardiac Struct Metab 8:77–98PubMedGoogle Scholar
  26. Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77:1496–1500PubMedGoogle Scholar
  27. Blobel G, Potter R (1967) Studies on free and membrane-bound ribosomes in rat liver. J Mol Biol 26:279–301PubMedGoogle Scholar
  28. Bollinger O (1884) Über die Häufigkeit und Ursachen der idiopathischen Herzhypertrophie in München. Dtsch Med Wochenschr 10:180–181Google Scholar
  29. Bolte H (1976) Alkoholkardiomyopathie. Munch Med Wochenschr 118:355–360Google Scholar
  30. Bonner W, Laskey R (1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46:83–88PubMedGoogle Scholar
  31. Borst P (1972) Mitochondrial nucleic acids. Annu Rev Biochem 41:333–376PubMedGoogle Scholar
  32. Borst P (1981) The expression of split genes in yeast mitochondrial DNA. Biochem Soc Trans 9:51Google Scholar
  33. Brawerman G (1974) Eukaryotic messenger RNA. Annu Rev Biochem 43:621–642PubMedGoogle Scholar
  34. Breuer C, Florini J (1965) Amino acid incorporation into protein by cell-free systems from rat skeletal muscle. IV. Effects of animal age, androgens, and anabolic agents on activity of muscle ribosomes. Biochemistry 4:1544–1550PubMedGoogle Scholar
  35. Brigden W, Robinson J (1964) Alcoholic heart disease. Br Med J 2:1283–1289PubMedGoogle Scholar
  36. Bugaisky L, Zak R (1979) Cellular growth of cardiac muscle after birth. Tex Rep Biol Med 39:123–138PubMedGoogle Scholar
  37. Burch G, Walsh J (1960) Cardiac insufficiency in chronic alcoholism. Am J Cardiol 6:864–874PubMedGoogle Scholar
  38. Burke J, Rubin E (1979) The effects of ethanol and acetaldehyde on the products of protein synthesis by liver mitochondria. Lab Invest 41:393–400PubMedGoogle Scholar
  39. Caldarera C, Casti A, Rossoni C, Visioli O (1971) Polyamines and noradrenaline following myocardial hypertrophy. J Mol Cell Cardiol 3:121–126PubMedGoogle Scholar
  40. Caldarera C, Orlandini G, Casti A, Moruzzi G (1974) Polyamine and nucleic acid metabolism in myocardial hypertrophy of the overloaded heart. J Mol Cell Cardiol 6:95–103PubMedGoogle Scholar
  41. Campbell P, Blobel G (1976) The role of organelles in the chemical modification of the primary translation products of secretory proteins. FEBS Lett 72:215–226PubMedGoogle Scholar
  42. Canfield J, Klionsky B (1959) Myocardial ischemia and early infarction: An electron microscopic study. Am J Pathol 35:489–523Google Scholar
  43. Carter W, Benjamin W, Faas F (1980) Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle. Metabolism 29:910–915PubMedGoogle Scholar
  44. Casey J, Cohen M, Rabinowitz M, Fukuhara H, Getz G (1972) Hybridization of mitochondrial transfer RNA’s with mitochondrial and nuclear DNA of grande (wild type) yeast. J Mol Biol 63:431–440PubMedGoogle Scholar
  45. Chain E, Sender P (1972) Insulin and protein synthesis in the perfused rat heart. Biochem J 129:14Google Scholar
  46. Chain E, Sender P (1973) Protein synthesis by perfused hearts from normal and insulin-deficient rats. Biochem J 132:593–601PubMedGoogle Scholar
  47. Chambon P (1975) Eukaryotic nuclear RNA polymerases. Annu Rev Biochem 44:613–638PubMedGoogle Scholar
  48. Chizzonite R, Everett A, Clark W, Zak R (1983) Molecular variants of cardiac myosin: Identification, isolation, quantitation and measurement of synthesis rates. In: Alpert N (ed) Perspectives in cardiovascular research, vol 7: Myocardial hypertrophy. Raven Press, New York, pp 477–496Google Scholar
  49. Civelli O, Vincent A, Maundrell K, Buri J, Scherrer K (1980) The translational repression of globin mRNA in free cytoplasmic ribonucleoprotein complexes. Eur J Biochem 107:577–585PubMedGoogle Scholar
  50. Claycomb W (1975) Biochemical aspects of cardiac muscle differentiation. Deoxyribonucleic acid synthesis and nuclear cytoplasmic deoxyribonucleic acid polymerase activity. J Biol Chem 250:3229–3235PubMedGoogle Scholar
  51. Claycomb W (1977) DNA synthetic activity of nuclei isolated from differentiating cardiac muscle and association of DNA polymerase with the outer nuclear membrane. Dev Biol 61:245–251PubMedGoogle Scholar
  52. Claycomb W (1978) Biochemical aspects of cardiac muscle differentiation. Biochem J 171:289–298PubMedGoogle Scholar
  53. Crie J, Millward D, Bates P, Griffin E, Wildenthal K (1981) Age-related alterations in cardiac protein turnover. J Mol Cell Cardiol 13:589–598PubMedGoogle Scholar
  54. Csapo Z, Dusek J, Rona G (1974) Peculiar myofilament changes near the intercalated disc in isoproterenol-induced cardiac muscle cell injury. J Mol Cell Cardiol 6:79–82PubMedGoogle Scholar
  55. Cutilletta A (1980) Regression of myocardial hypertrophy. II. RNA synthesis and RNA polymerase activity. J Mol Cell Cardiol 12:827–832PubMedGoogle Scholar
  56. Cutilletta A, Thilenius O, Arcilla R (1972) Adenyl cyclase activity in experimental myocardial hypertrophy. Am J Cardiol 29:258Google Scholar
  57. Cutilletta A, Dowell R, Rudnik M, Arcilla R, Zak R (1975) Regression of myocardial hypertrophy. I. Experimental model, changes in heart weight, nucleic acids and collagen. J Mol Cell Cardiol 7:767–781Google Scholar
  58. Cutilletta A, Reddy M, Dowell R, Zak R, Rabinowitz M (1976) Lysosomal and neutral hydrolase activity during the regression of cardiac hypertrophy. Recent Adv Stud Cardiac Struct Metab 7:111–118Google Scholar
  59. Cutilletta A, Aumont M, Nag A, Zak R (1977) Separation of muscle and non-muscle cells from adult rat myocardium. An application to the study of RNA polymerase. J Mol Cell Cardiol 9:399–412PubMedGoogle Scholar
  60. Cutilletta A, Rudnik M, Zak R (1978) Muscle and non-muscle cell RNA polymerase activity during the development of myocardial hypertrophy. J Mol Cell Cardiol 10:677–687PubMedGoogle Scholar
  61. Darnell S (1976) mRNA structure and function Prog Nucleic Acid Res Mol Biol 19:493–511PubMedGoogle Scholar
  62. Dart C, Holloszy J (1969) Hypertrophied non-failing rat heart. Circ Res 25:245–253PubMedGoogle Scholar
  63. Datta B, Silver M (1975) Cardiomegaly in chronic anemia in rats. An experimental study including ultrastructural, histometric, and stereologic observations. Lab Invest 32:503–514PubMedGoogle Scholar
  64. David M, Avi-Dor Y (1975) Stimulation of protein synthesis in cultured heart muscle cells by glucose. Biochem J 150:405–411PubMedGoogle Scholar
  65. DeLeiris J, Feuvray D (1979) Morphological correlates of myocardial enzyme release. In: Hearse D, DeLeiris J (eds) Enzyme in cardiology. Wiley, Chichester, pp 445–460Google Scholar
  66. DeLeiris J, Opie L (1978) Beneficial effects of glucose, insulin and potassium and detrimental effects of free fatty acid on enzyme release and on mechanical performance of isolated rat heart with coronary artery ligation. Cardiovasc Res 12:585–596Google Scholar
  67. DeLeiris J, Lubbe W, Opie L (1975) Effects of free fatty acids and glucose on enzyme release in experimental myocardial infarction. Nature 253:746–747Google Scholar
  68. Dintzis H (1961) Assembly of the peptide chains of hemoglobin. Proc Natl Acad Sci USA 47:247–261PubMedGoogle Scholar
  69. Dowell R, McManus R (1978) Pressure induced cardiac enlargement in neonatal and adult rats: Left ventricular functional characteristics and evidence of cardiac cell proliferation in the neonate. Circ Res 42:303–310PubMedGoogle Scholar
  70. Doyle C, Zak R, Fischman D (1974) The correlation of DNA synthesis and DNA polymerase activity in the developing chick heart. Dev Biol 37:133–145PubMedGoogle Scholar
  71. Ernst V, Levin D, London J (1978) Evidence that glucose-6-phosphate regulates protein synthesis initiation in reticulocyte lysates. J Biol Chem 253:7163–7172PubMedGoogle Scholar
  72. Everett A, Sparrow M, Taylor R (1979) Early changes in myocardial protein synthesis in vivo in response to right ventricular pressure overload in the dog. J Mol Cell Cardiol 11:1253–1263PubMedGoogle Scholar
  73. Fanburg B, Matsushita S, Raben M (1974) Nucleic acid metabolism in cardiac hypertrophy. Recent Adv Stud Cardiac Struct Metab 3:575–588Google Scholar
  74. Ferrans V (1978) Myocardial ultrastructure in human cardiac hypertrophy. In: Kaltenbach M, Loogen F, Olsen E (eds) Cardiomyopathy and myocardial biopsy. Springer, Berlin Heidelberg New York, pp 100–120Google Scholar
  75. Ferrans V, Herman E (1978) Cardiomyopathy induced by antineoplastic drugs. In: Kaltenbach M, Loogen F, Olsen E (eds) Cardiomyopathy and myocardial biopsy. Springer, Berlin Heidelberg New York, pp 12–26Google Scholar
  76. Ferrans V, Buja L, Roberts W (1975) Cardiac morphologic changes produced by ethanol. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis: biochemical and clinical. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 139–185Google Scholar
  77. Fizelova A, Fizel A (1972) Myocardial metabolic changes in cardiac hypertrophy and heart failure. Recent Adv Stud Cardiac Struct Metab 1:200–212PubMedGoogle Scholar
  78. Fleckenstein A (1971) Pathophysiologische Kausalfaktoren bei Myokardnekrose und Infarkt. Wien Z Inn Med 52:133–143PubMedGoogle Scholar
  79. Gallop P, Paz M (1975) Posttranslational protein modifications, with special attention to collagen and elastin. Physiol Rev 55:418–487PubMedGoogle Scholar
  80. Gamulin S, Naracsik P (1978) Alteration of hepatic polyribosome structure and function in mice during hypothermia. Exp Mol Pathol 28:372–380PubMedGoogle Scholar
  81. Geary S, Florini J (1972) Effect of age on rate of protein synthesis in isolated perfused mouse hearts. J Gerontol 27:325–332PubMedGoogle Scholar
  82. Gibson K, Harris P (1972a) The effect of pulmonary constriction on myocardial aminoacyl-tRNA synthetase and transferring enzyme activity. J Mol Cell Cardiol 4:381–390Google Scholar
  83. Gibson K, Harris P (1972b) Effects of hypobaric oxygenation, hypertrophy and diet on some myocardial cytoplasmic factors concerned with protein synthesis. J Mol Cell Cardiol 4:651–660Google Scholar
  84. Gibson K, Harris P (1973) The effects of diphtheria toxin on guinea pig myocardial protein synthesis. J Mol Cell Cardiol 5:185–190PubMedGoogle Scholar
  85. Gibson K, Harris P (1976) The effects of polyamines on cardiac protein biosynthesis. Recent Adv Stud Cardiac Struct Metab 7:71–76Google Scholar
  86. Gilbert W, Dressler D (1968) DNA replication: The rolling circle model. Cold Spring Harbor Symp Quant Biol 33:473–484PubMedGoogle Scholar
  87. Gillette P, Claycomb W (1974) Thymidine kinase activity in cardiac muscle during embryonic and postnatal development. Biochem J 142:685–690PubMedGoogle Scholar
  88. Giloh H, Schochot L, Mager J (1975) Inhibition of peptide chain initiation in lysates from ATP-depleted cells. Biochim Biophys Acta 414:293–320PubMedGoogle Scholar
  89. Giovanetti P, Stothers S (1975) Influence of diet and age on ribonucleic acid, protein and free amino acid levels of rat skeletal muscle. Growth 39:1–16Google Scholar
  90. Grove K, Zak R, Nair K, Aschenbrenner V (1969) Biochemical correlates of cardiac hypertrophy: IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat. Circ Res 25:473–485PubMedGoogle Scholar
  91. Gudbjarnason S, Telerman M, Bing R (1964) Protein metabolism in cardiac hypertrophy and heart failure. Am J Physiol 206:294–298PubMedGoogle Scholar
  92. Hagopian M, Anversa P, Loud A (1975) Quantitative radioautographic localization of newly synthesized protein in the postnatal rat heart. J Mol Cell Cardiol 7:357–367PubMedGoogle Scholar
  93. Halbreich A, Rabinowitz M (1971) Isolation of saccharomyces cerevisiae mitochondrial formyltetrahydrofolic acid: Methionyl-tRNA transformylase and the hybridization of mitochondrial fMet-tRNA with mitochondrial DNA. Proc Natl Acad Sci USA 68:294–298PubMedGoogle Scholar
  94. Hammond G, Wieben E, Markert C (1979) Molecular signals for initiating protein synthesis in organ hypertrophy. Proc Natl Acad Sci USA 76:2455–2459PubMedGoogle Scholar
  95. Hearse D, Chain E (1972) The role of glucose in the survival and recovery of the anoxic isolated perfused rat heart. Biochem J 128:1125–1133PubMedGoogle Scholar
  96. Hearse D, Humphrey S, Feuvray D, DeLeiris J (1976) A biochemical and ultrastructural study of the species variation in myocardial call damage. J Mol Cell Cardiol 8:759–778PubMedGoogle Scholar
  97. Hedden M, Buse M (1979) General stimulation of muscle protein synthesis by branched chain amino acids in vitro. Proc Soc Exp Biol Med 160:410–415PubMedGoogle Scholar
  98. Heinrich P, Gross V, Northemann W, Scheurlen M (1978) Structure and function of nuclear ribonucleoprotein complexes. Rev Physiol Biochem Pharmacol 81:102–134Google Scholar
  99. Henderson C, Frei E (1980) Adriamycin cardiotoxicity. Am Heart J 99:671–674PubMedGoogle Scholar
  100. Henney A, Parker D, Davies M (1980) Estimation of protein and DNA synthesis in allograft organ cultures as a measure of cell viability. Cardiovasc Res 14:154–160PubMedGoogle Scholar
  101. Herdson P, Kaltenbach J, Jennings R (1969) Fine structural and biochemical changes in dog myocardium during autolysis. Am J Pathol 57:539–557PubMedGoogle Scholar
  102. Hew C, Yip C (1976) Biosynthesis of polypeptide hormones. Can J Biochem 54:592–599Google Scholar
  103. Hibbs R, Ferrans V, Black W, Weilbacher D, Walsh J, Burch G (1965) Alcoholic cardiomyopathy. Am Heart J 69:766–779PubMedGoogle Scholar
  104. Hinterberger U (1974) Einfluß totaler Ischämie auf Ribosomen und Zytosolfaktoren des Rattenmyocards. Acta Biol Med Ger 32:181–192PubMedGoogle Scholar
  105. Hirsch M, Penman S (1973) Mitochondrial polyadenylic acid-containing RNA: Localisation and characterization. J Mol Biol 80:379–391PubMedGoogle Scholar
  106. Hjalmarson A, Ranneis D, Kao R, Morgan H (1975) Effects of hypophysectomy, growth hormone, and thyroxine on protein turnover in heart. J Biol Chem 250:4556–4561PubMedGoogle Scholar
  107. Hollenberg G, Borst P, Thuring R, Van Bruggen E (1969) Size, structure and genetic complexity of yeast mitochondrial DNA. Biochim Biophys Acta 186:417–419PubMedGoogle Scholar
  108. Hunt T, Hunter T, Munro A (1969) Control of haemoglobin synthesis: Rate of translation of the messenger RNA for the α and β chains. J Mol Biol 43:123–133PubMedGoogle Scholar
  109. Hunt T, Vanderhoff G, London I (1972) Control of globin synthesis: The role of heme. J Mol Biol 66:471–481PubMedGoogle Scholar
  110. Jacob F, Monod J (1961) Genetic regulatory mechanism in the synthesis of proteins. J Mol Biol 3:318–356PubMedGoogle Scholar
  111. Jain S, Roy R, Pluskal M, Croall D, Guha C, Sarkar S (1979) A model of translational control involving mRNA associated proteins in chick embryonic muscles. Mol Biol Rep 5:79–85PubMedGoogle Scholar
  112. Jefferson L, Wolpert E, Giger K, Morgan H (1971) Regulation of protein synthesis in heart muscle. J Biol Chem 246:2171–2178PubMedGoogle Scholar
  113. Jefferson L, Koehler S, Morgan H (1972) Effect of insulin on protein synthesis in skeletal muscle of an isolated perfused preparation of rat hemi corpus. Proc Natl Acad Sci USA 69:816–820PubMedGoogle Scholar
  114. Jefferson L, Rannels D, Munger B, Morgan H (1974) Insulin in the regulation of protein turnover in heart and skeletal muscle. Fed Proc 33:1098–1104PubMedGoogle Scholar
  115. Johnson L, Johnson R, Strehler B (1975) Cardiac hypertrophy, aging and changes in cardiac ribosomal RNA gene dosage in man. J Mol Cell Cardiol 7:125–133PubMedGoogle Scholar
  116. Kagen L, Linder S (1969) Synthesis of myoglobin by muscle polysomes. Biochim Biophys Acta 195:523–530PubMedGoogle Scholar
  117. Kahn A, Cottreau D, Daegelen D, Dreyfus J (1981) Cell-free translation of messenger RNAs from adult and fetal human muscle. Eur J Biochem 373:1–22Google Scholar
  118. Kao R, Rannels D, Morgan H (1976a) Effects of anoxia and severe ischemia on the turnover of myocardial proteins. In: Hjalmarson A, Werko L (eds) Experimental and clinical aspects on preservation of the ischemic myocardium. University of Göteborg, Sweden, pp 117–122Google Scholar
  119. Kao R, Rannels D, Morgan H (1976b) Effects of anoxia and ischemia on protein synthesis in perfused rat hearts. Circ Res 38/1:124–130Google Scholar
  120. Kao R, Rannels D, Whitman V, Morgan H (1978) Factors accounting for growth and atrophy of the heart. In: Kobayashi T, Ito J, Rona G (eds) Recent advances in studies on cardiac growth and metabolism. University Park Press, Baltimore/USA, pp 105–113Google Scholar
  121. Kaplan E, Richman H (1973) Calcium enhancement of protein synthesis in rat heart ventricles. Can J Biochem 51:1331–1334Google Scholar
  122. Kasamatsu H, Grossman L, Robberson D, Watson R, Vinograd J (1974) The replication and structure of mitochondrial DNA in animal cells. Cold Spring Harbor Symp Quant Biol 38:281–288PubMedGoogle Scholar
  123. Katz A, Messineo F (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48:1–16PubMedGoogle Scholar
  124. Katzberg A, Farmer B, Harris R (1977) Predominance of binucleation in isolated rat heart myocytes. Am J Anat 149:489–500PubMedGoogle Scholar
  125. Kivirikko K, Risteli L (1976) Biosynthesis of collagen and its alterations in pathological states. Med Biol 54:159–186PubMedGoogle Scholar
  126. Kleitke B, Hinterberger U, Onnen K, Rabitzsch G, Wollenberger A (1973) Der Einfluß von totaler Ischämie auf die Ribonukleinsäure- und Eiweißsynthese im Herzmuskel der Ratte, untersucht an Schnitten und zellfreien Systemen. Acta Biol Med Ger 30:33–55PubMedGoogle Scholar
  127. Knieriem H (1978) 1. Morphologic changes of the myocardium induced by different toxic agents. In: Kaltenbach M, Loogen F, Olsen E (eds) Cardiomyopathy and myocardial biopsy. Springer, Berlin Heidelberg New York, pp 2–11Google Scholar
  128. Korecky B, Rakusan K (1973) Dimensions of cardiac muscle cells during the life span of rat. Physiologist 16:366Google Scholar
  129. Kuhn H, Loogen F (1978) Die Wirkung von Alkohol auf das Herz einschließlich der Alkoholkardiomyopathie. Internist 19:97–106PubMedGoogle Scholar
  130. Laks M, Morady F, Swan H (1969) Canine right and left ventricular cell and sarcomere length after banding of the pulmonary artery. Circ Res 24:705–710PubMedGoogle Scholar
  131. Lamers J, Stinis J, Kort W, Hülsmann W (1978) Biochemical studies on the sarcolemmal function in the hypertrophied rabbit heart. J Mol Cell Cardiol 10:235–248PubMedGoogle Scholar
  132. Lenaz L, Page J (1976) Cardiotoxicity of adriamycin and related anthracyclines. Cancer Treat Rev 3:111–120PubMedGoogle Scholar
  133. Lenz J, Chatterjee G, Maroney P, Baglioni C (1978) Phosphorylated sugars stimulate protein synthesis and Met-tRNAf binding activity in extracts of mammalian cells. Biochemistry 17:80–87PubMedGoogle Scholar
  134. Lesch M, Peterson M (1975) Studies on the anoxic inhibition of myocardial protein synthesis. Recent Adv Stud Cardiac Struct Metab 8:101–115PubMedGoogle Scholar
  135. Liere E Van, Sizemore D (1971) Regression of cardiac hypertrophy following experimental hyperthyroidism in rats. Proc Soc Exp Biol Med 136:645–648PubMedGoogle Scholar
  136. Lingrel J, Borsook H (1963) A comparison of amino acid incorporation into the hemoglobin and ribosomes of marrow erythroid cells and circulating reticulocytes of severely anemic rabbits. Biochemistry 2:309–314Google Scholar
  137. Linzbach A (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382PubMedGoogle Scholar
  138. Linzbach J (1967) Funktionelle Morphologie der chronischen Herzinsuffizienz. Verh Deutsch Ges Pathol 51:124–138Google Scholar
  139. Lochner A, Brink A, Bester A (1973) Nucleic acid synthesis in myocardial ischaemia and infarction. J Mol Cell Cardiol 5:301–309PubMedGoogle Scholar
  140. Lodish H, Jacobsen M (1972) Regulation of hemoglobin synthesis. J Biol Chem 247:3622–3629PubMedGoogle Scholar
  141. Maizel J (1971) Polyacrylamide gel electrophoresis of viral proteins. In: Maramorosch K, Koprowski H (eds) Methods in virology, vol 5. Academic Press, New York, pp 179–246Google Scholar
  142. Majchrowicz E, Mendelson J (1970) Blood concentration of acetaldehyd and ethanol in chronic alcoholics. Science 168:1100–1102PubMedGoogle Scholar
  143. Manchester K, Wool J (1963) Insulin and incorporation of amino acids into protein muscle. I. Accumulation and incorporation studies with the perfused rat heart. Biochem J 89:202–209PubMedGoogle Scholar
  144. Mason D, Neri Serneri G, Oliver M (eds) (1979) Myocardial infarction, vols I and II. Excerpta Medica, Amsterdam Oxford PrincetonGoogle Scholar
  145. Masse M, Haray J (1974) Role of cell division in the cytodifferentiation of rat heart cells in culture. Biochimie 56:1581–1585PubMedGoogle Scholar
  146. Matsushita S, Sogani R, Raben M (1972) Ornithine decarboxylase in cardiac hypertrophy in the rat. Circ Res 31:699–709PubMedGoogle Scholar
  147. Maundrell K, Maxwell E, Civelli O, Vincent A, Goldenberg S, Buri J, Imaizumi-Scherrer M, Scherrer K, (1979) Messenger ribonucleoprotein complexes in avian erythroblasts: Carriers of post-transcriptional regulation? Mol Biol Rep 5:1–2, 43–51Google Scholar
  148. McFarlane A (1975) Available techniques for the study of protein synthesis. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 17–24Google Scholar
  149. Meerson F (1975) Role of synthesis of nucleic acids and protein in adaptation to the external environment. Phys Rev 55:79–123Google Scholar
  150. Meerson F, Breger A (1977) The common mechanism of the heart’s adaptation and deadaptation: hypertrophy and atrophy of the heart muscle. Basic Res Cardiol 72:228–234PubMedGoogle Scholar
  151. Meerson F, Pomoinitsky V (1972) The role of high-energy phosphate compounds in the development of cardiac hypertrophy. J Mol Cell Cardiol 4:571–597PubMedGoogle Scholar
  152. Meerson F, Javitz M, Breger A, Lerman M (1974) The mechanism of the heart’s adaptation to prolonged load and dynamics of RNA synthesis in the myocardium. Basic Res Cardiol 69:484–499PubMedGoogle Scholar
  153. Meerson F, Javich M, Lerman M (1978) Decrease in the rate of RNA and protein synthesis and degradation in the myocardium under long-term compensatory hyper-function and on aging. J Mol Cell Cardiol 10:145–159PubMedGoogle Scholar
  154. Metafora S, Felsani A, Cotrufo R, Tajana G, Iorio G, Del Rio A, DePrisco P, Esposito V (1980a) Neural control of gene expression in the skeletal muscle fibre: the nature of the lesion in the muscular protein-synthesizing machinery following denervation. Proc R Soc Lond [Biol] 209:239–255Google Scholar
  155. Metafora S, Felsani A, Cotrufo R, Tajana G, Del Rio A, De Prisco P, Rutigliano B, Esposito V (1980b) Neural control of gene expression in the skeletal muscle fibre: changes in the muscular mRNA population following denervation. Proc R Soc Lond [Biol] 209:257–273Google Scholar
  156. Millward D (1975) Diet and protein metabolism in skeletal muscle. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 203–231Google Scholar
  157. Mondal H, Sutton A, Chen V, Sarkar S (1974) Highly purified mRNA for myosin heavy chain: Size and polyadenylic acid content. Biochem Biophys Res Commun 56:988–996PubMedGoogle Scholar
  158. Morgan H, Rannels D (1975) The control of protein turnover in the isolated perfused rat heart. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 233–246Google Scholar
  159. Morgan H, Earl D, Broadus A, Wolpert E, Giger K, Jefferson L (1971a) Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J Biol Chem 246:2152–2162Google Scholar
  160. Morgan H, Jefferson L, Wolpert E, Ranneis D (1971b) Regulation of protein synthesis in heart muscle. II. Effect of amino acid levels and insulin on ribosomal aggregation. J Biol Chem 246:2163–2170Google Scholar
  161. Morgan H, Rannels D, Kao R (1974) Factors controlling protein turnover in heart muscle. Circ Res [Suppl III] 34:22–31Google Scholar
  162. Morkin E (1974) Activation of synthetic processes in cardiac hypertrophy. Circ Res [Suppl II] 34:37–48Google Scholar
  163. Morkin E, Ashford T (1968) Myocardial DNA synthesis in experimental cardiac hypertrophy. Am J Physiol 215:1409–1413PubMedGoogle Scholar
  164. Morkin E, Kimata S, Skillman J (1972) Myosin synthesis and degradation during development of cardiac hypertrophy in the rabbit. Circ Res 30:690–702PubMedGoogle Scholar
  165. Morris G, Buzash E, Rourke A, Tepperman K, Thompson W, Heywood S (1972) Myosin messenger RNA: Studies on its purification, properties and translation during myogenesis in culture. Cold Spring Harbour Symp Quant Biol 37:535–541Google Scholar
  166. Mueller A, Griffin W, Wildenthal K (1977) Isoproterenol-induced cardiomyopathy: Changes in cardiac enzymes and protection by methylprednisolone. J Mol Cell Cardiol 9:565–578PubMedGoogle Scholar
  167. Munro H (1970) Factors in regulation of liver protein synthesis. In: Rothschild M, Waldmann T (eds) Plasma protein metabolism. Academic Press, New York London, pp 157–167Google Scholar
  168. Munro H, Steinert P (1975) The intracellular organisation of protein synthesis. In: Amstein (ed) Synthesis of amino acids and protein. MTP International Review of Science, Biochemistry Series I, vol 7. HRV, pp 359–404Google Scholar
  169. Munro H, McLean E, Hird H (1964) Effect of protein intake on the ribonucleic acid of liver cell sap. J Nutr 83:186–192PubMedGoogle Scholar
  170. Munro H, Hubert C, Baliga B (1975) Regulation of protein synthesis in relation to amino acid supply — a review. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis — biochemical and clinical. Pergamon Press, New York Toronto Oxford Sidney Braunschweig, pp 33–66Google Scholar
  171. Murty C, Verney E, Sidransky H (1980) Acute effect of ethanol on membranes of the endoplasmic reticulum and on protein synthesis in rat liver. Alcoholism (NY) 4:93–103Google Scholar
  172. Nakano K (1978) Function of dietary protein, carbohydrate and fat on in vitro protein synthesis in skeletal muscle of rats. Nutrition Rep International 18:453–464Google Scholar
  173. Nakano K, Hara H (1979) Insulin dependent and independent actions of dietary protein on in vitro protein synthesis in skeletal muscle of rats. J Nutrition 109:1390–1398Google Scholar
  174. Narayanan N, Eapen J (1973a) Cell-free synthesis of myosin by cardiac myofibrillar ribosomes. Biochem Biophys Res Commun 55:508–514Google Scholar
  175. Narayanan N, Eapen J (1973b) Protein synthesis by rat cardiac muscle myofibrils. Biochim Biophys Acta 512:413–425Google Scholar
  176. Narayanan N, Eapen J (1975) Age related changes in the incorporation of (14C)Leucine into myofibrillar and sarcoplasmic proteins of red and white muscles of chicks. Aust J Exp Biol Med Sci 53:59–63PubMedGoogle Scholar
  177. Nass M, Buck C (1970) Studies of mitochondrial tRNA from animal cells. J Mol Biol 54:187–198PubMedGoogle Scholar
  178. Nomura M, Tissieres A, Lengyel P (eds) (1974) Ribosomes. Cold Spring Harbor Laboratory, New York, p 930Google Scholar
  179. Nutter D, Murray T, Heymsfield S, Fuller E (1979) The effect of chronic protein-calorie undernutrition in the rat on myocardial function and cardiac function. Circ Res 45:144–152PubMedGoogle Scholar
  180. O’Hara D, Curfman G, Trumbull C, Smith T (1981) A procedure for measuring the contributions of intracellular and extracellular tyrosine pools to the rate of myocardial protein synthesis. J Mol Cell Cardiol 13:925–940PubMedGoogle Scholar
  181. Okazaki K, Holtzer H (1966) Myogenesis: Fusion, Myosin synthesis and the mitotic cycle. Proc Natl Acad Sci USA 56:1484–1490PubMedGoogle Scholar
  182. Olivares J, Ray A, Aussedat J, Verdys M, Rossi A (1980) Increased myocardial pyrimidine nucleotide synthesis in isoproterenol-induced cardiac hypertrophy in rats. Biochem Biophys Res Commun 95:367–373PubMedGoogle Scholar
  183. Oratz M, Rothschild M (1975) The influence of alcohol and altered nutrition on albumin synthesis. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford, pp 343–372Google Scholar
  184. Ouellette A, Kumar A, Malt R (1976) Physical aspects and cytoplasmic distribution of messenger RNA in mouse kidney. Biochim Biophys Acta 425:384–395PubMedGoogle Scholar
  185. Page E, Polimeni P, Zak R, Early J, Johnson M (1972) Myofibrillar mass in rat and rabbit heart muscle. Circ Res 30:430–439PubMedGoogle Scholar
  186. Page E, Early J, Power B (1974) Normal growth of ultrastructures in rat left ventricular myocardial cells. Circ Res [Suppl II] 34/35:12–16Google Scholar
  187. Pain V, Levis J, Huvos P, Henshaw E, Clemens M (1980) The effects of amino acid starvation on regulation of polypeptide chain initiation in Ehrlich ascites tumor cells. J Biol Chem 255:1486–1491PubMedGoogle Scholar
  188. Palade G (1958) Microsomal particles and protein synthesis. In: First Symposium of Biophysical Society. Pergamon, Elmsford/NYGoogle Scholar
  189. Palade G, Siekevitz P (1956) Liver microsomes. J Biophys Biochem Cytol 2:171–200PubMedGoogle Scholar
  190. Palmiter R (1973) Ovalbumin messenger ribonucleic acid translation. J Biol Chem 248:2095–2106PubMedGoogle Scholar
  191. Palmiter R (1975) Quantitation of parameters that determine the rate of ovalbumin synthesis. Cell 4:189–197PubMedGoogle Scholar
  192. Perlman S, Abelson H, Penman S (1973) Mitochondrial protein synthesis: RNA with the properties of eukaryotic messenger RNA. Proc Natl Acad Sci USA 70:350–353PubMedGoogle Scholar
  193. Perry R (1976) Processing of RNA. Annu Rev Biochem 45:605–629PubMedGoogle Scholar
  194. Peters T (1977) Intracellular albumin transport. In: Rosenoer V, Oratz M, Rothschild M (eds) Albumin structure, function and uses. Pergamon Press, Oxford New York, pp 305–332Google Scholar
  195. Peterson M, Ferguson A, Lesch M (1973) A method for the determination of amino acid incorporation into protein and the specific activity of tissue amino acid in small cardiac muscle samples. J Mol Cell Cardiol 5:547–552PubMedGoogle Scholar
  196. Peterson M, Mead R, Welty J (1974) Protein and free amino acid metabolism in the failing canine heart. In: Dhalla N, Winnipeg F (eds) Myocardial metabolism. Urban & Schwarzenberg, München Berlin Wien, pp 615–623Google Scholar
  197. Piko L, Matsumoto L (1977) Complex forms and replicative intermediates of mitochondrial DNA in tissues from adult and senescent mice. Nucleic Acids Res 4:1301–1314PubMedGoogle Scholar
  198. Pool P, Braunwald E (1968) Fundamental mechanisms in congestive heart failure. Am J Cardiol 22:7–15PubMedGoogle Scholar
  199. Przybyla A, Strohman R (1974) Myosin heavy chain messenger RNA from myogenic cell cultures. Proc Natl Acad Sci USA 71:662–666PubMedGoogle Scholar
  200. Rabinowitz M (1973) Protein synthesis and turnover in normal and hypertrophied heart. Am J Cardiol 31:202–210PubMedGoogle Scholar
  201. Rabinowitz M (1974) Overview on pathogenesis of cardiac hypertrophy. Circ Res [Suppl II] 34/35:3–11Google Scholar
  202. Rabinowitz M, Zak R (1972) Biochemical and cellular changes in cardiac hypertrophy. Annu Rev Med 23:245–262PubMedGoogle Scholar
  203. Rabinowitz M, Zak R (1975) Mitochondria and cardiac hypertrophy. Circ Res 36:367–376PubMedGoogle Scholar
  204. Raina A, Janne J (1975) Physiology of the natural polyamines putrescine, spermidine and spermine. Med Biol 53(3):121–147PubMedGoogle Scholar
  205. Rajamanickam C, Merten S, Kwiatkowska-Patzer B, Chuang C, Zak R, Rabinowitz M (1979) Changes in mitochondrial DNA in cardiac hypertrophy in the rat. Circ Res 45:505–515PubMedGoogle Scholar
  206. Rannels D, Kao R, Morgan H (1975) Effect of insulin on protein turnover in heart muscle. J Biol Chem 250:1694–1701PubMedGoogle Scholar
  207. Rannels D, Kao R, Morgan H (1977) Protein synthesis and degradation during ischemia. In: Lefer A, Kelliher G, Rovetto M (eds) Pathophysiology and therapeutics of myocardial ischemia. Spectrum, New York, pp 149–168Google Scholar
  208. Rannels D, Pegg A, Rannels S, Jefferson L (1978) Effect of starvation on initiation of protein synthesis in skeletal muscle and heart. Am J Physiol 235:126–133Google Scholar
  209. Ravid K, Diamant P, Avi-Dor Y (1980) Glucose-dependent stimulation of protein synthesis in cultured heart muscle cells. FEBS Lett 119:20–24PubMedGoogle Scholar
  210. Rawat A (1979) Inhibition of cardiac protein synthesis by prolonged ethanol administration. Res Commun Chem Pathol Pharmacol 25:89–102PubMedGoogle Scholar
  211. Regan T (1975) Metabolic adaption to alcohol in the heart. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford, pp 247–271Google Scholar
  212. Regan T, Ettinger P, Haider B, Ahmed S, Oldewurtel H, Lyons M (1977) The role of ethanol in cardiac disease. Annu Rev Med 28:393–409PubMedGoogle Scholar
  213. Reindell H, Kindermann W, Dickhuth H, Simon G (1978) Das Sportherz. In: Blümchen G (Hrsg) Beiträge zur Geschichte der Kardiologie. Pharma-Schwarz, Monheim, S 87–110Google Scholar
  214. Richter D, Isono K (1977) The mechanism of protein synthesis-initiation, elongation and termination in translation of genetic messages. In: Curr Top Microbiol Immunol 76:83–125Google Scholar
  215. Riecker G (1982) Klinische Kardiologie, 2. Aufl. Springer, Berlin Heidelberg New YorkGoogle Scholar
  216. Robberson D, Aloni Y, Attardi G, Davidson N (1971) Expression of the mitochondrial genome in HeLa-cells. VI. Size determination of mitochondrial ribosomal RNA by electron microscopy. J Mol Biol 60:473–484PubMedGoogle Scholar
  217. Rona G, Chappel C, Balazs T, Gandry R (1959) An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch Pathol 67:443–455Google Scholar
  218. Rothschild M, Schreiber S, Oratz M (1975) Effects of ethanol on protein synthesis. Adv Exp Med Biol 56:179–194PubMedGoogle Scholar
  219. Rothschild M, Oratz M, Schreiber S (1977) Albumin synthesis. In: Rosenoer V, Oratz M, Rothschild M (eds) Albumin, structure, function, uses. Pergamon Press, Oxford pp 228–253Google Scholar
  220. Rubin E (1979) Alcoholic myopathy in heart and skeletal muscle. New Engl J Med 301:28–33PubMedGoogle Scholar
  221. Rubin E, Beattie D, Lieber C (1970) Effects of ethanol on the biogenesis of mitochondrial membranes and associated mitochondrial functions. Lab Invest 23:620–627PubMedGoogle Scholar
  222. Rumyantsev P, Snigirevskaya E (1968) Ultrastructure of differentiating cells of the heart muscle in the state of mitotic division. Acta Morphol Acad Sci Hung 16:271–283PubMedGoogle Scholar
  223. Russel D, Shiverick K, Hamrell B, Alpert N (1971) Polyamine synthesis during initial phases of stress-induced cardiac hypertrophy. Am J Physiol 221:1287–1291Google Scholar
  224. Sandritter W (1977) Wie das Herz Muskelmasse auf- und abbaut. In: 8th Intern Meeting Intern Study Group for Research in Cardiac Metabolism, Tokio, May 76. Vgl auch Selecta 3:153–165Google Scholar
  225. Sanford C, Griffin E, Wildenthal K (1978) Synthesis and degradation of myocardial protein during the development and regression of thyroxine-induced cardiac hypertrophy in rats. Circ Res 43:688–694PubMedGoogle Scholar
  226. Sanger F (1981) Determination of nucleotide sequences in DNA. Biosci Rep 1:3–18PubMedGoogle Scholar
  227. Sarma J, Ikeda S, Fischer R, Maruyama Y, Weishaar R, Bing R (1976) Biochemical and contractile properties of heart muscle after prolonged alcohol administration. J Mol Cell Cardiol 8:951–972PubMedGoogle Scholar
  228. Schatz G, Böhm P, Gasser S, Lewin A, Ohashi A, Suissa M (1981) Import of proteins into mitochondria. Biochem Soc Trans 9:52Google Scholar
  229. Scherrer K, Imaizumi-Scherrer M, Reynaud C, Therwath A (1979) On pre-messenger RNA and transcriptions a review. Molec Biol Rep 5:1–2, p 5–28Google Scholar
  230. Schreiber G, Urban J (1978) The synthesis and secretion of albumin. Rev Physiol Biochem Pharmacol 82:27–29PubMedGoogle Scholar
  231. Schreiber G, Urban J, Zähringer J, Reutter W, Frosch U (1971) The secretion of serum protein and the synthesis of albumin and total protein in regenerating rat liver. J Biol Chem 246:4531–4538PubMedGoogle Scholar
  232. Schreiber S (1975) Stress and myocardial protein synthesis: The effect of alcohol and acetaldehyde. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 273–290Google Scholar
  233. Schreiber S, Oratz M, Rothschild M (1966) Protein synthesis in the overloaded mammalian heart. Am J Physiol 211:314–318PubMedGoogle Scholar
  234. Schreiber S, Klein I, Oratz M, Rotschild M (1971) Adenyl cyclase activity and cyclic AMP in acute cardiac overload: a method for measuring cyclic AMP production based on ATP specific activity. J Mol Cell Cardiol 2:55–65PubMedGoogle Scholar
  235. Schreiber S, Briden K, Oratz M, Rothschild M (1972) Ethanol Acetaldehyde and myocardial protein synthesis. J Clin Invest 51:2820–2826PubMedGoogle Scholar
  236. Schreiber S, Oratz M, Klein I, Rothschild M (1974a) Protein degradation in acute cardiac loading: The problem of reutilization of amino acids. Recent Adv Stud Cardiac Struct Metab 3:589–601Google Scholar
  237. Schreiber S, Oratz M, Rothschild M, Reff F, Evans C (1974b) Alcoholic cardiomyopathy. II. The inhibition of cardiac microsomal protein synthesis by acetaldehyd. J Mol Cell Cardiol 6:207–213Google Scholar
  238. Schreiber S, Evans C, Oratz M, Rothschild M (1982) Problems in evaluating cardiac protein synthesis. J Mol Cell Cardiol 14:307–312PubMedGoogle Scholar
  239. Schrey A (1980). Die koronare Herzkrankheit. Urban & Schwarzenberg, München Wien BaltimoreGoogle Scholar
  240. Schultheiß P, Bolte H, Cyran J (1979) Enzymbestimmungen in Myocardbiopsien zur Unterscheidung zwischen der kongestiven Kardiomyopathie unklarer Ätiologie (COCM) und der Alkoholkardiomyopathie (ACM). Verh Dtsch Ges Inn Med 85:868–872Google Scholar
  241. Scornik O (1974) In-vivo rate of translation by ribosome of normal and regenerating liver. J Biol Chem 249:3876–3883PubMedGoogle Scholar
  242. Shafritz D, Yap S, Strair R (1979) Regulation of albumin synthesis in rat liver. Molec Biol Rep 5:1–2, 71–78Google Scholar
  243. Shanoff H (1972) Alcoholic cardiomyopathy: An introductory review. Can Med Assoc J 106:55–62PubMedGoogle Scholar
  244. Sherton C, Wool I (1972) Determination of the number of proteins in liver ribosomes and ribosomal subunits by two-dimensional polyacrylamide gel electrophoresis. J Biol Chem 247:4460–4467PubMedGoogle Scholar
  245. Shlafer M, Gelband H, Sung R, Palmer R, Bassett A (1978) Time-dependent alterations of myocardial microsomal yield and calcium accumulation in experimentally-induced right ventricular hypertrophy and failure. J Mol Cell Cardiol 10:395–407PubMedGoogle Scholar
  246. Shore G, Tata J (1977) Functions for polyribosome-membrane interactions in protein synthesis. Biochim Biophys Acta 472:197–236PubMedGoogle Scholar
  247. Short F (1969) Protein synthesis by red and white muscle in vitro: effect of insulin and animal age. Am J Physiol 217:307–309PubMedGoogle Scholar
  248. Spirin A (1979) Messenger ribonucleoproteins (informosomes) and RNA-binding proteins. Molec Biol Rep 5:53–57Google Scholar
  249. Srivastava Ü (1969) Polyribosome concentration of mouse skeletal muscle as a function of age. Arch Biochem Biophys 130:129–139PubMedGoogle Scholar
  250. Stevenin J, Jacob M (1979) Structure of pre-mRNP. Models and pitfalls. Molec Biol Rep 5:29–35Google Scholar
  251. Stotz E (1943) A colorimetric determination of acetaldehyde in blood. J Biol Chem 148:585–591Google Scholar
  252. Stringfellow C, Brachfeld N (1970) A study of transfer RNA, total RNA and protein interrelationships in control and stressed isolated perfused rat heart. J Mol Cell Cardiol 1:221–233PubMedGoogle Scholar
  253. Suzuki T (1975) RNA content in the heart muscle cells following adrenalectomy and additional overload in the rat. Tohoku J Exp Med 115:239–245PubMedGoogle Scholar
  254. Swynghedauw B, Schwartz K, Bercovici J, Bouveret P, Lompre A, Thiem N, Lacombe G (1980) Experimental systolic and diastolic overloading in rats: total protein turnover rate. Enzymatic and structural properties of myosin. Basic Res Cardiol 75:143–148PubMedGoogle Scholar
  255. Takenaka F Higuchi M (1974) High-energy phosphate contents of subepicardium and subendocardium in the rat treated with isoproterenol and some other drugs. J Mol Cell Cardiol 6:123–135PubMedGoogle Scholar
  256. Thomas A, Benne R, Voorma H (1981) Initiation of eukaryotic protein synthesis. FEBS Lett 128:177–185PubMedGoogle Scholar
  257. Thompson R, Fitzharris T, Denslow S, LeRoy E (1979) Collagen synthesis in the developing chick heart. Tex Rep Biol Med 39:305–319PubMedGoogle Scholar
  258. Tolnai S, Korecky B (1980) Lyosomal hydrolases in the heterotopically isotransplanted heart undergoing atrophy. J Mol Cell Cardiol 12:869–890PubMedGoogle Scholar
  259. Tzagoloff A, Macino G, Sebald W (1979) Mitochondrial genes and translation products. Annu Rev Biochem 48:419–441PubMedGoogle Scholar
  260. Wall R, Lippmann S, Toth K, Fedoroff N (1977) A general method for the large-scale isolation of poly somes and messenger RNA applied to MOPC 21 mouse myeloma tumors. Anal Biochem 82:115–129PubMedGoogle Scholar
  261. Waterlow J, Garlick P (1975) Metabolic Adaptions to Protein Deficiency. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, pp 67–94Google Scholar
  262. Watkins C, Morgan H (1979) Relationship between rates of methylation and synthesis of heart protein. J Biol Chem 254:693–701PubMedGoogle Scholar
  263. Watson J, Crick F (1953) Molecular structure of nucleic acids. Nature 171:737–738PubMedGoogle Scholar
  264. Weinstock I, Markiewicz L (1974) Muscle protein synthesis during development of the normal and dystrophic chicken. Biochim Biophys Acta 374:197–206PubMedGoogle Scholar
  265. Wildenthal K (1973) Studies of foetal mouse hearts in organ culture: Metabolic requirements for prolonged function in vitro and the influence of cardiac maturation on substrate utilization. J Mol Cell Cardiol 5:87–99PubMedGoogle Scholar
  266. Wildenthal K, Müller E (1974) Increased myocardial cathepsin D activity during regression of thyrotoxic cardiac hypertrophy. Nature 249:478–479PubMedGoogle Scholar
  267. Wildenthal K, Müller E (1977) Lysosomal enzymes in the development and regression of myocardial hypertrophy induced by systemic hypertension. J Mol Cell Cardiol 9:121–130PubMedGoogle Scholar
  268. Wildenthal K, Poole R, Dingle J (1975) Influence of starvation on the activities and localization of cathepsin D and other lysosomal enzymes in hearts of rabbits and mice. J Mol Cell Cardiol 7:841–855PubMedGoogle Scholar
  269. Wintersberger E (1978) DNA-Replication in eukaryotes. Rev Physiol Biochem Pharmacol 84:93–142PubMedGoogle Scholar
  270. Wollenberger A, Kleitke B (1974) Ribonucleic acid and protein synthesis in rat heart mitochondria isolated after aortic constriction, strenuous physical exercise, total myocardial ischemia, and theophylline treatment. Recent Adv Stud Cardiac Struct Metab 3:535–550Google Scholar
  271. Wool I (1979) The structure and function of eukaryotic ribosomes. Annu Rev Biochem 48:719–754PubMedGoogle Scholar
  272. Wool I, Stirewalt W, Kurihara K, Low R, Bailey P, Oyer D (1968) Mode of action of insulin in the regulation of protein biosynthesis in muscle. Recent Prog Horm Res 24:139–213PubMedGoogle Scholar
  273. Wulff V, Freshman M (1961) Age-related reduction of the RNA content of rat cardiac muscle and cerebellum. Arch Biochem Biophys 95:181–182PubMedGoogle Scholar
  274. Zähringer J (1979) Die Regulation der Herzmuskelproteinsynthese. Klin Wochenschr 57:541–553PubMedGoogle Scholar
  275. Zähringer J (1981a) The regulation of protein synthesis in heart muscle under normal conditions and in the adriamycin-cardiomyopathy. Klin Wochenschr 59:1273–1287Google Scholar
  276. Zähringer J (1981b) Genexpression und Proteinsynthese im normalen Herzmuskel und bei der Adriamycin-Kardiomyopathie. Habilitationsschrift, Ludwig-Maximilians-Universität MünchenGoogle Scholar
  277. Zähringer J, Höfling B (1980) Adriamycin-Cardiomyopathy: Changes in myocardial polyribosome and mRNA levels. In: Bolte H (ed) Myocardial biopsy. Springer, Berlin Heidelberg New York, pp 119–130Google Scholar
  278. Zähringer J, Kandolf R (1980) Isolation, subcellular distribution and in-vitro translation of myocardial mRNA and polyribosomes. Circulation [Suppl III] 62:114Google Scholar
  279. Zähringer J, Klaubert A (1982) The effect of triiodothyronine on the cardiac mRNA. J Mol Cell Cardiol 14:559–571PubMedGoogle Scholar
  280. Zähringer J, Baliga B, Munro H (1976a) Subcellular distribution of total Poly(A)-containing RNA and ferritin-mRNA in the cytoplasm of rat liver. Biochem Biophys Res Commun 68:1088–1093Google Scholar
  281. Zähringer J, Baliga B, Munro H (1976b) Novel mechanism for translational control in the regulation of ferritin synthesis by iron. Proc Natl Acad Sci USA 73:857–861Google Scholar
  282. Zähringer J, Baliga B, Crim M, Munro H (1977a) Hepatic synthesis of export proteins. In: Rosenoer V, Oratz M, Rothschild M (eds) Albumin structure, function and use. Pergamon Press, Oxford New York Toronto, pp 203–225Google Scholar
  283. Zähringer J, Baliga B, Drake R, Munro H (1977b) Distribution of ferritin-mRNA and albumin-mRNA between free and membrane-bound rat liver polysomes. Biochim Biophys Acta 474:234–244Google Scholar
  284. Zähringer J, Baliga B, Munro H (1979) Relative abundance of specific messenger-RNA species in the free mRNP fraction of rat liver. FEBS Lett 108:317–320PubMedGoogle Scholar
  285. Zähringer J, Höfling B, Raum W, Kandolf R (1980) Effect of adriamycin on the polyribosome and messenger-RNA content of rat heart muscle. Biochim Biophys Acta 608:315–323PubMedGoogle Scholar
  286. Zähringer J, Raum W, Kandolf R, Troesch G, Stab G, Jäger E (1981a) Isolation and characterization of structurally and functionally intact polyribosomes and mRNA from rat heart muscle. J Mol Cell Cardiol 13:127–146Google Scholar
  287. Zähringer J, Kandolf R, Raum W (1981b) Decrease of myocardial messenger RNA in adriamycin-treated rats. FEBS Lett 123:169–172Google Scholar
  288. Zähringer J, Pritzl N, Stäb G (1982) Quantitation of cardiac polysomal mRNA by hybridization to (3H) Poly(U). J Mol Cell Cardiol 14:539–550PubMedGoogle Scholar
  289. Zak R (1974) Development and proliferative capacity of cardiac muscle cells. Circ Res [Suppl II] 34/35:17–26Google Scholar
  290. Zak R (1977) Metabolism of myofibrillar proteins in the normal and hypertrophic heart. Basic Res Cardiol 72:235–240PubMedGoogle Scholar
  291. Zak R, Rabinowitz M (1979) Molecular aspects of cardiac hypertrophy. Annu Rev Physiol 41:539–552PubMedGoogle Scholar
  292. Zak R, Rabinowitz M, Platt C (1967) Ribonucleic acids associated with myofibrils. Biochemistry 6:2493–2499PubMedGoogle Scholar
  293. Zak R, Martin A, Dowell R, Rabinowitz M (1974) Turnover of myocardial components in cardiac hypertrophy. Recent Adv Stud Cardiac Struct Metab 3:603–614Google Scholar
  294. Zak R, Martin A, Blough R (1979a) Assessment of protein turnover by use of radioisotopic tracers. Physiol Rev 59:407–447Google Scholar
  295. Zak R, Prior G, Rabinowitz M (1979b) Assessment of protein synthesis by the use of aminoacyl-tRNA as precursor. Methods Enzymol 59:310–321Google Scholar
  296. Zak R, Rabinowitz M, Rajamanickam C, Merten S, Kwiatkoska-Patzer B (1980) Mitochondrial proliferation in cardiac hypertrophy. Basic Res Cardiol 75:171–178PubMedGoogle Scholar
  297. Zimmer H, Gerlach E (1977) Changes of myocardial adenine nucleotide and protein synthesis during development of cardiac hypertrophy. Basic Res Cardiol 72:241–246PubMedGoogle Scholar
  298. Zimmer H, Trendelenburg C, Gerlach E (1972) Acceleration of adenine nucleotide synthesis de novo during development of cardiac hypertrophy. J Mol Cell Cardiol 4:279–282PubMedGoogle Scholar
  299. Zimmer H, Steinkopff G, Ibel H, Koschine H (1980) Is the ATP decline a signal for stimulating protein synthesis in isoproterenol-induced cardiac hypertrophy? J Mol Cell Cardiol 12:421–426PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • J. Zähringer

There are no affiliations available

Personalised recommendations