Skip to main content

Die Pathogenese des kardialen Ödems

  • Chapter
Herzinsuffizienz

Part of the book series: Handbuch der inneren Medizin ((INNEREN 9,volume 9 / 4))

  • 14 Accesses

Zusammenfassung

Eine dauerhafte Reduktion des von der linken Herzkammer gepumpten Blutvolumens und ein Versagen eines oder beider Ventrikel, die normale Fraktion ihres enddiastolischen Blutvolumens auszuwerfen, löst einen komplexen Ablauf von Adjustierungen aus, an dessem Ende eine abnorme Akkumulation von Flüssigkeit steht, die klinisch als Ödem imponieren kann. Diese Flüssigkeitsretention muß als Kompensationsmechanismus angesehen werden, mit dessen Hilfe der Organismus versucht, das Herzzeitvolumen und damit die Perfusion lebenswichtiger Organe aufrechtzuerhalten (Peters 1952).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ahearn DJ, Mäher JF (1972) Heart failure as a complication of hemodialysis arteriovenous fistula. Ann Intern Med 77:201–212

    PubMed  CAS  Google Scholar 

  • Alexander RW, Gill JR Jr, Yamehe H, Lovenberg W, Keiser HR (1974) Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man. J Clin Invest 54:194–205

    PubMed  CAS  Google Scholar 

  • Andersson B (1971) Thirst- and brain control of water balance. Am Sci 59:408–416

    PubMed  CAS  Google Scholar 

  • Andersson B (1974) Central control of body fluid homeostasis. Proc Aust Physiol Pharmacol Soc 5:139–145

    CAS  Google Scholar 

  • Andersson B, Eriksson I (1971) Conjoint action of sodium and angiotensin on brain mechanisms controlling water and salt balance. Acta Physiol Scand 81:18–27

    PubMed  CAS  Google Scholar 

  • Andersson B, Olsson K (1973) On central control of body fluid homeostasis. Cond Reflex 8:147–154

    PubMed  CAS  Google Scholar 

  • Andersson B, Eriksson I, Fernandez O, Kolmodin CG, Oltner R (1972) Centrally mediated effects of sodium and angiotensin II on arterial blood pressure and fluid balance. Acta Physiol Scand 85:398–406

    PubMed  CAS  Google Scholar 

  • Andrews WHH, Orbach J (1974) Sodium receptors activating some nerves of perfused rabbit livers. Am J Physiol 227:1273–1279

    PubMed  CAS  Google Scholar 

  • Armstrong CD, Richards V (1944) Results of long term experimental constriction of the hepatic veins in dogs. Arch Surg 48:412–419

    Google Scholar 

  • Arndt JD (1965) Diuresis induced by water infusion into the carotid body and its inhibition by small hemorrhage. Pfluegers Arch 282:313–320

    CAS  Google Scholar 

  • Asfoury ZM (1971) Sympathectomy and the innervation of the kidney. Appleton-Century-Crofts, New York

    Google Scholar 

  • Asterita MF, Windhager EE (1975) Estimate of relative thickness of peritubular interstitial space in necturus kidney. Am J Physiol 228:1393–1402

    PubMed  CAS  Google Scholar 

  • Atzler E, Herbst R (1923) Die Schwankungen des Flußvolumens und deren Beeinflussung. Z Ges Exp Med 38:137–146

    Google Scholar 

  • August JT, Nelson DH, Thorn GW (1958) Response of normal subjects to large amounts of aldosterone. J Clin Invest 37:1549–1555

    PubMed  CAS  Google Scholar 

  • Baldus WP, Summerskill WHJ, Hunt I, Maher FT (1964) Renal circulation in cirrhosis: observations based on catheterization of renal vein. J Clin Invest 43:1090–1097

    PubMed  CAS  Google Scholar 

  • Bank N, Aynedjian H, Bansol V, Goldman D (1970) Effect of acute hypertension on sodium transport by the distal nephron. Am J Physiol 219:275–280

    PubMed  CAS  Google Scholar 

  • Barger AC (1956) Na retention in congestive heart failure. Metabolism 5:480–487

    PubMed  CAS  Google Scholar 

  • Barger AC (1966) Renal hemodynamic factors in congestive heart failure. Ann NY Acad Sci 139:276–284

    PubMed  CAS  Google Scholar 

  • Barger AC, Herd JA (1962) Renal vascular anatomy and distribution of blood flow. In: Orloff J, Berliner RW (eds) Handbook of physiology, section 8: Renal physiology. American Physiological Society, Washington, DC, pp 249–256

    Google Scholar 

  • Barger AC, Wilson GM, Price HL, Ross RS, Brooks L, Boling EA (1955) Relationship between exchangeable sodium and rate of sodium excretion in dogs with experimental valvular lesions of the heart. Am J Physiol 180:387–398

    PubMed  CAS  Google Scholar 

  • Barger AC, Yates FE, Rudolph AM (1961) Renal hemodynamics and sodium excretion in dogs with graded valvular damage and in congestive heart failure. Am J Physiol 200:601–608

    PubMed  CAS  Google Scholar 

  • Baumann G, Loriaux DL (1976) Failure of endogenous prolactin to alter renal salt and water excretion and adrenal function in man. J Clin Endocrinol Metab 43:643–651

    PubMed  CAS  Google Scholar 

  • Bedford DE, Lovibond JL (1941) Observations on the venous pressure in normal individuals. Br Heart J 3:93–99

    PubMed  CAS  Google Scholar 

  • Bell NH, Schedl HP, Bartter FC (1964) An explanation for abnormal water retention and hypo-osmolality in congestive heart failure. Am J Med 36:351–360

    PubMed  CAS  Google Scholar 

  • Bello-Reuss E, Colindres RE, Pastoriza-Munoz E, Mueller RA, Gottschalk CW (1975) Effects of acute unilateral renal denervation in the rat. J Clin Invest 56:208–216

    PubMed  CAS  Google Scholar 

  • Bello-Reuss E, Trevino DL, Gottschalk CW (1976) Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest 57:1104–1107

    Google Scholar 

  • Bennett CM (1973) Effect of extracellular volume expansion upon sodium reabsorption in the distal nephron of dogs. J Clin Invest 52:2548–2557

    PubMed  CAS  Google Scholar 

  • Berl T, Brantbar N, Ben-David M, Czaczkes W, Kleeman Ch (1976) Osmotic control of prolactin release and its effect on renal water excretion in man. Kidney Int 10:158–167

    PubMed  CAS  Google Scholar 

  • Berner C (1964) Diagnostic probabilities in patients with conspicuous ascites. Arch Intern Med 113:687–691

    PubMed  CAS  Google Scholar 

  • Berson SA, Yalow RS, Azulay A, Schreiber S, Roswit B (1952) The biological decay curve of P 32 tagged erythrocytes. Application to the study of acute changes in blood volume. J Clin Invest 31:581–590

    PubMed  CAS  Google Scholar 

  • Blake LH, Staub NC (1976) Pulmonary vascular transport in sheep. A mathematical model. Microvasc Res 12:197–220

    PubMed  CAS  Google Scholar 

  • Bland RD, Demling RH, Selinger SL, et al. (1976) Effects of alveolar hypoxia on lung fluid and protein transport in unanesthetized sheep. Circ Res 40:269–274

    Google Scholar 

  • Blythe WB, Welt LG (1963) Dissociation between filtered load of sodium and its rate of excretion in the urine. J Clin Invest 42:1491–1496

    PubMed  CAS  Google Scholar 

  • Bø G, Hauge A, Nicolaysen G (1977) Alveolar pressure and lung volume as determinants of net transvascular fluid filtration. J Appl Physiol 42:476–482

    PubMed  Google Scholar 

  • Bourgoignie JJ, Hwang KH, Ipakchi E, Bricker NS (1974) The presence of a natriuretic factor in urine of patients with chronic uraemia. J Clin Invest 53:1559–1567

    PubMed  CAS  Google Scholar 

  • Bowers RE, Brigham KL, Owen PJ (1977) Salicylate pulmonary edema: Mechanism in sheep and review of the clinical literature. Am Rev Respir Dis 115:261–268

    PubMed  CAS  Google Scholar 

  • Bowers RE, McKeen CR, Park BE, et al. (1979) Increased pulmonary vascular-permeability follows intracranial hypertension in sheep. Am Rev Respir Dis 119:637–641

    PubMed  CAS  Google Scholar 

  • Brace RA, Guyton AC (1976) Effect of hindlimb isolation procedure on isogravimetric capillary pressure and transcapillary fluid dynamics in dogs. Circ Res 38:192–199

    PubMed  CAS  Google Scholar 

  • Brace RA, Guyton AC (1977) Interaction of transcapillary starling forces in the isolated dog forelimb. Am J Physiol 233:136–143

    Google Scholar 

  • Brennan LA, Malvin RI, Jochim KE, Roberts DE (1971) Influence of right and left atrial receptors on plasma concentrations of ADH and renin. Am J Physiol 221:273–281

    PubMed  CAS  Google Scholar 

  • Brenner BM, Galla JM (1971) Influence of postglomerular hematocrit and protein concentration on rat nephron fluid transfer. Am J Physiol 220:148–161

    PubMed  CAS  Google Scholar 

  • Brenner BM, Troy JL (1971) Postglomerular vascular protein concentration: evidence for a causal role in governing fluid reabsorption and glomerulotubular balance by the renal proximal tubule. J Clin Invest 50:336–349

    PubMed  CAS  Google Scholar 

  • Brenner BM, Falchuk KH, Keimowitz RI, Berliner RW (1969) The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J Clin Invest 48:1519–1531

    PubMed  CAS  Google Scholar 

  • Brenner BM, Troy JL, Daugharty TM (1971) On the mechanism of inhibition in fluid reabsorption by the proximal tubule of the volume-expanded rat. J Clin Invest 50:1596–1604

    PubMed  CAS  Google Scholar 

  • Brenner BM, Troy JL, Daugharty TM, MacInnes RM (1973) Quantitative importance of changes in postglomerular colloid osmotic pressure in mediating glomerulotubular balance in the rat. J Clin Invest 52:190–197

    PubMed  CAS  Google Scholar 

  • Bresler EH (1956) The problem of the volume component of body fluid homeostasis. Am JMed Sci 232:93–104

    CAS  Google Scholar 

  • Bressack MA, Bland RD (1980) Alveolar hypoxia increases lung fluid filtration in unanaesthetized new born lambs. Circ Res 46:111–116

    PubMed  CAS  Google Scholar 

  • Briggs AP (1948) Renal and circulatory factors in edema formation of congestive heart failure. J Clin Invest 27:810–817

    CAS  Google Scholar 

  • Brigham KL (1978) Lung edema due to increased vascular permeability. In: Staub NC (ed) Lung water and solute exchange. Dekker, New York, pp 235–276

    Google Scholar 

  • Brown JJ, Davies DL, Johnson VW, Lever AF, Robertson JIS (1970) Renin relationships in congestive cardiac failure, treated and untreated. Am Heart J 80:329–335

    PubMed  CAS  Google Scholar 

  • Buckalew VM Jr, Lancaster CD (1971) Studies of a humoral sodium transport inhibitory activity in normal dogs and dogs with ligation of the inferior vena cava. Circ Res [Suppl 11] 28:44–52

    Google Scholar 

  • Buckalew VM Jr, Nelson DB (1974) Natriuretic and sodium transport inhibitory activity in plasma of volume-expanded dogs. Kidney Int 5:12–19

    PubMed  CAS  Google Scholar 

  • Buggy J, Fisher AF (1974) Evidence for a dual central role for angiotensin in water and sodium intake. Nature 250:14–22

    Google Scholar 

  • Calvin DB, Decherd F, Herrmann G (1940) Plasma protein shifts during diuresis. Proc Soc Exp Biol Med 44:578–587

    CAS  Google Scholar 

  • Carmago CA, Dowdy AH, Hancock EW, Luetscher JA (1965) Decreased plasma clearance and hepatic extraction of aldosterone in patients with heart failure. J Clin Invest 44:356–364

    Google Scholar 

  • Carpenter CCJ, Davis JO, Holman JE, Ayers CR, Bahn RC (1961) Studies on the response of the transplanted kidney and the transplanted adrenal gland to thoracic inferior vena cava constriction. J Clin Invest 40:196–204

    PubMed  CAS  Google Scholar 

  • Carretero OA, Scicli AG (1978) The renal kallikrein-kinin system in human and in experimental hypertension. Klin Wochenschr 56:113–125

    PubMed  CAS  Google Scholar 

  • Chaimovitz C, Szylman P, Alroy G, Better OW (1972) Mechanism of increased renal tubular sodium reabsorption in cirrhosis. Am J Med 52:198–204

    PubMed  CAS  Google Scholar 

  • Champlain J De, Boucher R, Genest J (1963) Arterial angiotensin levels in edematous patients. Proc Soc Exp Biol Med 113:932–940

    Google Scholar 

  • Chobanian AV, Burrows BA, Hollander W (1961) Body fluids and electrolyte composition in cardiac patients with severe heart disease but without peripheral edema. Circulation 24:743–751

    PubMed  CAS  Google Scholar 

  • Cirksena WJ, Dirks HJ, Berliner RW (1966) Effect of thoracic cava obstruction on response of proximal tubule sodium reabsorption to saline infusion. J Clin Invest 45:276–284

    Google Scholar 

  • Clarkson EM, Talner LB, Wardener HE de (1970) The effect of plasma from blood volume-expanded dogs on sodium, potassium and PAH transport of renal tubule fragments. Clin Sci 38:617–624

    PubMed  CAS  Google Scholar 

  • Clarkson EM, Wardener HE de (1972) Inhibition of sodium and potassium transport in separated renal tubule fragments incubated in extracts of urine obtained from salt-loaded individuals. Clin Sci 42:607–611

    PubMed  CAS  Google Scholar 

  • Claybaugh JR, Share L (1973) Vasopressin, renin and cardiovascular responses to continuous slow hemorrhage. Am J Physiol 224:519–528

    PubMed  CAS  Google Scholar 

  • Clement DL, Pelletier CI, Shepherd JT (1972) Role of vagal afferents in the control of renal sympathetic nerve activity in the rabbit. Circ Res 31:824–832

    PubMed  CAS  Google Scholar 

  • Cohnheim J, Lichtheim J (1877) Über Hydracmia und hydrämisches Oedem. Lungenoedem. Virchows Arch [Pathol Anat] 69:106–119

    Google Scholar 

  • Cope CL (1928) The osmotic pressure of the blood proteins in nephritis. Q J Med 22:91–99

    Google Scholar 

  • Cort JH, Lichardus B (1968) Natriuretic hormone. Nephron 5:401–409

    PubMed  CAS  Google Scholar 

  • Cortney MA (1969) Renal tubular transfer of water and electrolytes in adrenalectomized rats. Am J Physiol 216:589–598

    PubMed  CAS  Google Scholar 

  • Cortney MA, Mylle M, Lassiter WE, Gottschalk CW (1965) Renal tubular transport of water, solute and PAH in rats loaded with iostonic saline. Am J Physiol 209:1199–2010

    PubMed  CAS  Google Scholar 

  • Cottrell TS, Levine OR, Senior RM, et al. (1967) Electron microscopic alterations at the alveolar level in pulmonary edema. Circ Res 21:783–798

    PubMed  CAS  Google Scholar 

  • Courtice FC, Korner PI (1952) The effect of anoxia on pulmonary edema produced by massive intravenous infusions. Aust J Exp Biol Med Sci 30:511–526

    PubMed  CAS  Google Scholar 

  • Courtice FC, Simmonds WJ (1954) Physiological significance of lymph drainage of the serous cavities and lungs. Physiol Rev 34:419–426

    PubMed  CAS  Google Scholar 

  • Courtice FC, Steinbeck AW (1951a) Absorption of protein from peritoneal cavity. J Physiol (Lond) 114:336–343

    CAS  Google Scholar 

  • Courtice FC, Steinbeck AW (1951b) The effects of lymphatic obstruction and of posture on the absorption of protein from the peritoneal cavity. Aust J Exp Biol Med Sci 29:451–461

    CAS  Google Scholar 

  • Cowan GSM, Staub NC, Edmunds LH (1976) Changes in fluid compartments and dry weights of reinplanted dog lungs. J Appl Physiol 40:962–970

    PubMed  Google Scholar 

  • Crabbe J (1961) Stimulation of active sodium transport by isolated toad bladder with aldosterone in vitro. J Clin Invest 40:2103–2110

    PubMed  CAS  Google Scholar 

  • Daly JJ, Roe JW, Horrocks P (1967) A comparison of sodium excretion following the infusion of saline into systemic and portal veins in the dog: evidence for a hepatic role in the control of sodium excretion. Clin Sci 33:481–497

    PubMed  CAS  Google Scholar 

  • Daugharty TM, Belleau LJ, Martino JA, Earley LE (1968) Interrelationship of physical factors affecting sodium reabsorption in dog. Am J Physiol 215:1442–1447

    PubMed  CAS  Google Scholar 

  • Davis JO (1965) Physiology of congestive heart failure. In: Hamilton WF, Dow P (eds) Handbook of physiology, vol 3: Circulation. Williams & Wilkins, Baltimore, pp 2069–2071

    Google Scholar 

  • Davis JO (1970) The mechanisms of salt and water retention in cardiac failure. Hospital Practice 5:63–76

    Google Scholar 

  • Davis JO, Howell DS (1953) Mechanisms of fluid and electrolyte retention in experimental preparations in dogs. 2. With thoracic inferior vena cava constriction. Circ Res 1:171–179

    PubMed  CAS  Google Scholar 

  • Davis JO, Lindsay AE, Southworth JL (1952) Mechanisms of fluid and electrolytic retention in experimental preparations in dogs. 1. Acute and chronic pericarditis. Bull Johns Hopk Hosp 90:64–76

    CAS  Google Scholar 

  • Davis JO, Howell DS, Southworth JL (1953) Mechanisms of fluid and electrolyte retention in experimental preparations in dogs. Circ Res 1:260–270

    PubMed  CAS  Google Scholar 

  • Davis JO, Howell DS, Hyatt RE (1955) Sodium excretion in adrenalectomized dogs with chronic cardiac failure produced by pulmonary artery constriction. Am J Physiol 183:263–270

    PubMed  CAS  Google Scholar 

  • Davis JO, Goodkind MJ, Ball WC Jr (1957) Functional changes during high output failure produced by daily haemorrhage in dogs with pulmonic stenosis. Circ Res 5:388–399

    PubMed  CAS  Google Scholar 

  • Davis JO, Urquhart J, Higgins JT Jr, Rubin EC, Hartroft PM (1964) Hypersecretion of aldosterone in dogs with chronic aorto-caval fistula and high output heart failure. Circ Res 14:471–485

    PubMed  CAS  Google Scholar 

  • Davis JO, Johnson CI, Howards SS, Wright FS (1967) Humoral factors in the regulation of renal sodium excretion. Fed Proc 26:60–63

    PubMed  CAS  Google Scholar 

  • Denton DA (1973) The brain and sodium homeostasis. Cond Reflex 8:125–131

    PubMed  CAS  Google Scholar 

  • Dieter E (1960) Der Einfluß der Kreislauffüllung auf die Aktivität der Nierennerven beim Frosch. Pfluegers Arch 270:215–222

    CAS  Google Scholar 

  • Dirks JH, Seely JF (1970) Effect of saline infusions and furosemide on the dog distal nephron. Am J Physiol 219:114–122

    PubMed  CAS  Google Scholar 

  • Dirks JH, Seely JF, Levy M (1976) Control of extracellular fluid volume and the pathophysiology of edema formation. In: Brenner BM, Rector FC Jr (eds) The kidney. Saunders, Philadelphia London Toronto, pp 495–552

    Google Scholar 

  • Dock WM (1935) The anatomical and hydrostatic basis of orthopnea and of right hydrothorax in cardiac failure. Am Heart J 10:1047–1058

    Google Scholar 

  • Donatsch P, Richardson B (1975) Lokalisation of prolactin in rat kidney tissue using a double-antibody technique. J Endocrinol 66:101–108

    PubMed  CAS  Google Scholar 

  • Dousa TP, Northrup TE (1978) Cellular interactions between vasopressin and prostaglandins in the mammalian kidney. Contrib Nephrol 12:106–109

    PubMed  CAS  Google Scholar 

  • Drinker CK (1946) Extravascular protein and lymphatic system. Ann NY Acad Sci 46:807–818

    CAS  Google Scholar 

  • Dunn FL, Brennan TJ, Nelson AE, Robertson GL (1973) The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 52:3212–3221

    PubMed  CAS  Google Scholar 

  • Dunn MJ, Hood VL (1977) Prostaglandins and the kidney. Am J Physiol 233:F169–177

    PubMed  CAS  Google Scholar 

  • Earley LE (1964) Effect of renal arterial infusion of albumin on saline diuresis in the dog. Proc Soc Exp Biol Med 116:262–271

    PubMed  CAS  Google Scholar 

  • Earley LE, Daugharty TM (1969) Sodium metabolism. N Engl J Med 281:72–80

    PubMed  CAS  Google Scholar 

  • Earley LE, Friedler RM (1966) The effects of combined renal vasodilatation and pressor agents on renal hemodynamics and the tubular reabsorption of sodium. J Clin Invest 45:542–551

    PubMed  CAS  Google Scholar 

  • Earley LE, Schrier RW (1973) Intrarenal control of sodium excretion by hemodynamic and physical factors. In: Orloff J, Berliner RW (eds) Handbook of physiology, Sect 8. Renal physiology. The American Physiological Society, Washington, pp 721–748

    Google Scholar 

  • Earley LE, Martino JA, Friedler RM (1966) Factors affecting sodium reabsorption by the proximal tubule as determined during blockade of distal sodium reabsorption. J Clin Invest 45:1668–1684

    PubMed  CAS  Google Scholar 

  • Eknoyan G, Suki WN, Rector FC Jr, Seidin DW (1967) Functional characteristics of the diluting segment of the dog nephron and the effect of extracellular volume expansion on the reabsorptive capacity. J Clin Invest 46:1178–1188

    PubMed  CAS  Google Scholar 

  • Elkin DC, Warren JV (1947) Arteriovenous fistulas: their effect on the circulation. JAMA 134:1524–1532

    CAS  Google Scholar 

  • Ellis LB (1933) Plasma protein deficiency in patients with cardiac edema. Med Clin North Am 16:943–950

    Google Scholar 

  • Epstein FH, Post RS, McDowell M (1953) Effects of an arteriovenous fistula on renal hemodynamics and electrolyte excretion. J Clin Invest 32:233–241

    PubMed  CAS  Google Scholar 

  • Epstein AN, Fitzsimons JT, Rolls BJ (1970) Drinking induced by injection of angiotensin into the brain of the rat. J Physiol (Lond) 210:457–468

    CAS  Google Scholar 

  • Epstein M, Duncan DC, Fishman LM (1972) Characterization of the natriuresis caused in normal man by immersion in water. Clin Sci 43:275–287

    PubMed  CAS  Google Scholar 

  • Epstein M, Pins D, Schneider N (1975) Determinants of the deranged sodium homeostasis in decompensated cirrhosis. 6th Int Congr Nephrol Florence (Abstr)

    Google Scholar 

  • Erdmann AJ III, Vaughan TR Jr, Brigham KL, Woolverton WC, Staub NC (1975) Effect of increased vascular pressure on lung fluid balance in unanesthetized sheep. Cir Res 37:271–284

    Google Scholar 

  • Fahr F, Eschler I (1938) Capillary pressure in right heart failure. Proc Soc Exp Biol Med 37:701–711

    Google Scholar 

  • Farkas G v (1926) Über die Wirkung des Albumin/Globulin-Quotienten auf den osmotischen Druck des Serums. Z Ges Exp Med 50:410–417

    Google Scholar 

  • Fein A, Grossmann RF, Jones JG, Overland E, Pitts L, Murray JF, Staub NC (1979) The value of edema fluid protein measurement in patients with pulmonary edema. Am J Med 67:32–38

    PubMed  CAS  Google Scholar 

  • Fishman AP, Maxwell MH, Crowder CH, Morales P (1951) Kidney function in cor pulmonale. Circulation 3:703–714

    PubMed  CAS  Google Scholar 

  • Fitzsimons JT (1972) Thirst. Physiol Rev 52:468–477

    PubMed  CAS  Google Scholar 

  • Fitzsimons JT, Simons BJ (1969) The effect on drinking in the rat of intravenous infusion of angiotensin given alone or in combination with other stimuli of thirst. J Physiol (Lond) 203:45–52

    CAS  Google Scholar 

  • Freeman S (1953) Recent advances in the physiology and biochemistry of the liver. Med Clin North Am 37:109

    CAS  Google Scholar 

  • Friedberg CK (1971) Edema and pulmonary edema: Pathologic physiology and differential diagnosis. Cardiovasc Dis XIII:546–579

    Google Scholar 

  • Friedberg CK, Lasser RP, Allen DF, Furst SK, Gabor GE (1964) Production of chronic elevation of left ventricular and diastolic pressure in dogs: hematologic and renal studies. Circ Res 15:1–13

    PubMed  CAS  Google Scholar 

  • Friedler RM, Belleau LJ, Martino JA, Earley LE (1967) Haemodynamically induced natriuresis in the presence of sodium retention resulting from constriction of the thoracic inferior vena cava. J Lab Clin Med 69:565–583

    PubMed  CAS  Google Scholar 

  • Gauer OH, Henry JP (1963) Circulatory basis of fluid volume control. Physiol Rev 43:423–435

    PubMed  CAS  Google Scholar 

  • Gauer OH, Thron HL (1965) Postural changes in the circulation. In: Handbook of physiology, Sect 2, vol 3. Williams & Wilkins, Baltimore, pp 2409

    Google Scholar 

  • Gauer OH, Henry JP, Behn C (1970) The regulation of extracellular fluid volume. Annu Rev Physiol 32:547–556

    PubMed  CAS  Google Scholar 

  • Genest J, De Champlain J, Veyrat R, Koiw E, Boucher R (1966) The activity of the renin-angiotensin-aldosterone system in hypertension and hydropic diseases. In: Krück F (Hrsg) Aktuelle Probleme der Nephrologie. Springer, Berlin Heidelberg New York, S 152

    Google Scholar 

  • Genest J, Granger P, De Champlain J, Boucher R (1968) Endocrine factors in congestive heart failure. Am J Cardiol 22:35–46

    PubMed  CAS  Google Scholar 

  • Gibbons THB (1948) Über das Verhalten des Venendrucks in verschiedenen Stadien von chronischer Herzinsuffizienz. Am Heart J 35:553–560

    PubMed  CAS  Google Scholar 

  • Gibson JG, Evans WA (1937a) Clinical studies of the blood volume. I. Clinical application of a method employing the azo dye “Evans-blue” and the spectrophotometer. J Clin Invest 16:301–309

    CAS  Google Scholar 

  • Gibson JG, Evans WA (1937b) Clinical studies of the blood volume. II. The relation of plasma and total blood volume to venous pressure, blood velocity rate, physical measurements, age and sex in ninety normal humans. J Clin Invest 16:317–324

    CAS  Google Scholar 

  • Gibson JG, Evans WA (1937c) Clinical studies of the blood volume. III. Changes in blood volume, venous pressure and blood velocity rate in chronic congestive heart failure. J Clin Invest 16:851–859

    CAS  Google Scholar 

  • Gill JR Jr (1970) Edema. Annu Rev Med 21:269–281

    PubMed  Google Scholar 

  • Gill JR Jr, Casper AGT (1969) Role of the sympathetic nervous system in the renal response to hemorrhage. J Clin Invest 48:915–922

    PubMed  Google Scholar 

  • Gill JR Jr, Casper AGT (1972) Depression of proximal tubular sodium reabsorption in the dog in response to renal beta-adrenergic stimulation by isoproterenol. J Clin Invest 50:112–118

    Google Scholar 

  • Gill JR Jr, Mason DT, Bartter FC (1964) Adrenergic nervous system in sodium metabolism: effects of guanethidine and sodium-retaining steroids in normal man. J Clin Invest 43:177–185

    PubMed  CAS  Google Scholar 

  • Gill JR Jr, Carr AA, Fleischman LE, Casper AGT, Bartter FC (1967) Effects of pentolinium on sodium excretion in dogs with constriction of the vena cava. Am J Physiol 212:191–201

    PubMed  CAS  Google Scholar 

  • Goetz KL, Bend GC, Bloxham DD (1975) Atrial receptors and renal function. Physiol Rev 55:157–168

    PubMed  CAS  Google Scholar 

  • Gorlin R, Lewis BM, Haynes FW, Dexter L (1952) Studies of the circulation dynamics at rest in mitral valvular regurgitation with and without stenosis. Am Heart J 43:357–365

    PubMed  CAS  Google Scholar 

  • Grandchamp A, Boulpaep EL (1974) Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule. J Clin Invest 54:69–78

    PubMed  CAS  Google Scholar 

  • Grausz H, Lieberman R, Earley LE (1972) Effect of plasma albumine on sodium reabsorption in patients with nephrotic syndrome. Kidney Int 1:47–56

    PubMed  CAS  Google Scholar 

  • Graveline DE, Duane E, Jackson MM (1961) Diuresis associated with prolonged water immersion. J Appl Physiol 17:519–525

    Google Scholar 

  • Green R, Windhager EE, Giebisch G (1974) Protein oncotic pressure effects on proximal tubular fluid movement in the rat. Am J Physiol 226:265–273

    PubMed  CAS  Google Scholar 

  • Gunton RW, Paul W (1955) Blood volume in congestive heart failure. J Clin Invest 34:879–885

    PubMed  CAS  Google Scholar 

  • Gupta PD, Henry JP, Sinclair R, von Baumgarten R (1966) Responses of atrial and aortic baroreceptors to non-hypotensive haemorrhage and to transfusion. Am J Physiol 211:1429–1436

    PubMed  CAS  Google Scholar 

  • Guyton AC (1963) Concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ Res 12:399–405

    PubMed  CAS  Google Scholar 

  • Guyton AC (1965) Interstitial fluid pressure: II. Pressurevolume curves of interstitial space. Circ Res 16:452–460

    PubMed  CAS  Google Scholar 

  • Guyton AC (1969) Interstitial fluid pressure-volume relationships and their regulation. In : Wolstenholme GEW, Knight J (eds) Ciba Foundation Symposium on Circulatory and Respiratory Mass Transport. J & A Churchill, London, p 4

    Google Scholar 

  • Guyton AC (1976) Textbook of medical physiology, 5th edn. Saunders, Philadelphia

    Google Scholar 

  • Guyton AC (1981) Textbook of medical physiology, 6th edn. Saunders, Philadelphia

    Google Scholar 

  • Guyton AC, Lindsey AW (1959) Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ Res 7:649–657

    PubMed  CAS  Google Scholar 

  • Guyton AC, Jones CE, Coleman TC (1973) Circulatory physiology: Cardiac output and its regulation, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  • Guyton AC, Taylor AE, Granger HJ (1975) Circulatory physiology. II. Dynamics and control of the body fluids. Saunders, Philadelphia

    Google Scholar 

  • Haber E (1976) The role of renin in normal and pathological cardiovascular homeostasis. Circulation 54:849–861

    PubMed  CAS  Google Scholar 

  • Haberich FJ (1968) Osmoreception in the portal circulation. Fed Proc 27:1137–1144

    PubMed  CAS  Google Scholar 

  • Haberich FJ, Aziz O, Nowacki PE, Ohm W (1969) Zur Spezifität der Osmoreceptoren in der Leber. Pfluegers Arch 313:289–296

    CAS  Google Scholar 

  • Halmägyi D, Felkai B, Ivänyi J, Hetenyi G (1952) The role of the nervous system in the maintenance of venous hypertension in heart failure. Br Heart J 14:101–109

    PubMed  Google Scholar 

  • Harris AW, Gibson LG (1939) Clinical studies of the blood volume. VII. Changes in blood volume in Bright’s disease with or without edema, renal insufficiency or congestive heart failure and in hypertension. J Clin Invest 18:527–537

    PubMed  CAS  Google Scholar 

  • Harrison TR (1939) Failure of the circulation, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Hayslett JP, Kashgarian M, Epstein FH (1967) Changes in proximal and distal tubular reabsorption produced by rapid expansion of extracellular fluid. J Clin Invest 46:1254–1264

    PubMed  CAS  Google Scholar 

  • Hayward GW (1955) Pulmonary oedema. Br Med J 1:1361–1366

    PubMed  CAS  Google Scholar 

  • Henry JP, Goodman J, Meehan JP (1947a) Effects of acute anoxia on the capillary permeability of the human arm. Am J Med 2:657–668

    Google Scholar 

  • Henry JP, Goodman J, Meehan JP (1947b) Capillary permeability in relation to acute anoxia and to venous oxygen saturation. J Clin Invest 26:1119–1126

    CAS  Google Scholar 

  • Henry JP, Gupta PD, Meehan JP, Sinclair R, Share L (1968) The role of affrents from the low pressure system in the release of antidiuretic hormone during nonhypotensive haemorrhage. Can J Physiol Pharmacol 46:287–299

    Google Scholar 

  • Herrmann GR (1946) Blood plasma proteins in patients with heart failure. Ann Intern Med 24:893–902

    PubMed  CAS  Google Scholar 

  • Hodge RL, Lowe RD, Vane JR (1966) The effects of alteration of blood volume on the concentration of circulating angiotensin in anesthetized dogs. Am J Physiol 185:613–621

    CAS  Google Scholar 

  • Hodge RL, Lowe RD, Ng KKF, Vane JR (1969) Role of the vagus nerve in the control of the concentration of angiotensin in the circulation. Nature 221:177–183

    PubMed  CAS  Google Scholar 

  • Hollander W, Judson WE (1956) The relationship of cardiovascular and renal hemodynamic function to sodium excretion in patients with severe heart disease but without edema. J Clin Invest 35:970–981

    PubMed  CAS  Google Scholar 

  • Holman E (1962) Contributions to cardiovascular physiology gleaned from clinical and experimental observations of abnormal arteriovenous communications. J Cardiovasc Surg 3:48–57

    CAS  Google Scholar 

  • Hope J (1832) A treatise on the diseases of the heart and blood vessels. Kidd, London

    Google Scholar 

  • Horrobin DF, Lloyd IJ, Lipton A, Burstyn PG, Durkin N, Muiruri KL (1971) Actions of prolactin on human renal function. Lancet 2:352–355

    PubMed  CAS  Google Scholar 

  • Horrobin DF, Hanku MS, Nassar BA (1974) Hepatorenal syndrome and prolactin. N Engl J Med 290:408–412

    PubMed  CAS  Google Scholar 

  • Horster M, Thurau K (1968) Micropuncture studies on the filtration rate of single superficial and juxtamedullary glomeruli in the rat kidney. Pfluegers Arch 301:162–181

    CAS  Google Scholar 

  • Howards SS, Davis BB, Knox FG, Wright FS, Berliner RW (1968) Depression of fractional sodium reabsorption by the proximal tubule of the dog without sodium diuresis. J Clin Invest 47:1561–1576

    PubMed  CAS  Google Scholar 

  • Hurley JV (1978) Current views on mechanisms of pulmonary edema. J Pathol 125:59–79

    PubMed  CAS  Google Scholar 

  • Hyatt RE, Smith JR (1954) The mechanism of ascites. A physiological appraisal. Am J Med 434–443

    Google Scholar 

  • Hyman AL, Kadowitz PJ (1979) Pulmonary vasodilator activity of prostacyclin (PGI2) in the cat. Circ Res 45:404–409

    PubMed  CAS  Google Scholar 

  • Hyman AL, Spannkahe ES, Kadowitz PJ (1978) Prostaglandins and the lung. Am Rev Respir Dis 117:111–136

    PubMed  CAS  Google Scholar 

  • Iliff LD (1971) Extra-alveolar vessels and edema development in excised dog lungs. Circ Res 28:524–532

    Google Scholar 

  • Iversen P, Nakazawa F (1927) Om Oedempatogenese. Ugeskr Loeg 89:640–648

    Google Scholar 

  • Jacobs LS, Snyder PJ, Utiger RD, Daughaday WH (1973) Prolactin response to thyrotropin-releasing hormone in normal subjectcs. J Clin Endocrinol Metab 36:1069–1076

    PubMed  CAS  Google Scholar 

  • James AH (1949) The mechanism of pleural and ascitic effusions, with a suggested method for the indirect estimation of portal venous pressure. Clin Sci 8:291–299

    PubMed  CAS  Google Scholar 

  • Jamison RL (1970) Micropuncture study of superficial and juxtamedullary nephrons in the rat. Am J Physiol 218:46–55

    PubMed  CAS  Google Scholar 

  • Johnson JA, Moore WW, Segar WE (1969) Small changes in left atrial pressure and plasma antidiuretic hormone titers in dogs. Am J Physiol 217:210–217

    PubMed  CAS  Google Scholar 

  • Judson WE, Helmer OM (1971) Relationship of cardiorenal function to renin-aldosterone system in patients with valvular heart disease. Circulation 44:2–10

    Google Scholar 

  • Kahl FR, Flint JF, Szidon JP (1974) Influence of left atrial distension on renal vasomotor tone. Am J Physiol 226:240–248

    PubMed  CAS  Google Scholar 

  • Kaloyanides GJ, Azer M (1971) Evidence for a humoral mechanism in volume expansion natriuresis. J Clin Invest 50:1603–1617

    PubMed  CAS  Google Scholar 

  • Kaloyanides GJ, Dibona GF, Bastron RD (1974) Response of the isolated kidney to acute volume expansion with equilibrated blood. Proc Soc Exp Biol Med 147:619–625

    PubMed  CAS  Google Scholar 

  • Kamm DE, Levinsky NG (1965) The mechanism of denervation natriuresis. J Clin Invest 44:93–101

    PubMed  CAS  Google Scholar 

  • Kaplan MA, Bourgoignie JJ, Rosecan J, Bricker NS (1974) The effects of the natriuretic factor from uremic urine on sodium transport, water and electrolyte content and pyruvate oxidation by the isolated toad bladder. J Clin Invest 53:1568–1578

    PubMed  CAS  Google Scholar 

  • Karim F, Kidd C, Malpus CM, Penna PE (1972) The effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity. J Physiol (Lond) 227:243–250

    CAS  Google Scholar 

  • Kaufmann W, Steiner B, Dürr F, Meurer KA, Behn C (1969) Induzierter Aldosteronismus bei hydropischer Herzinsuffizienz. Klin Wochenschr 47:16–22

    PubMed  CAS  Google Scholar 

  • Knedel M (1955) Quantitative Glykoproteidbestimmungen in isolierten Serumeiweißfraktionen. Verh Dtsch Ges Inn Med 61:277–281

    CAS  Google Scholar 

  • Knox FG, Gasser J (1974) Altered distal sodium reabsorption in volume expansion. Mayo Clin Proc 49:775–784

    PubMed  CAS  Google Scholar 

  • Knox FG, Davis BB, Berliner RW (1967) Effect of chronic cardiac denervation on renal response to saline infusion. Am J Physiol 213:174–182

    PubMed  CAS  Google Scholar 

  • Knox FG, Willis LR, Strandhoy JW, Schneider EG, Navar LG, Ott CE (1972) Role of peritubule Starling forces in proximal reabsorption following albumin infusion. Am J Physiol 223:741–752

    PubMed  CAS  Google Scholar 

  • Knox FG, Schneider EG, Willis LR, Strandhoy JW, Ott CE (1973) Effect of volume expansion on sodium excretion in the presence and absence of increased delivery from superficial proximal tubules. J Clin Invest 52:1642–1651

    PubMed  CAS  Google Scholar 

  • Kowalski HJ, Abelmann WH (1953) Cardiac output at rest in Laennec’s cirrhosis. J Clin Invest 32:1025–1033

    PubMed  CAS  Google Scholar 

  • Kramer HG, Gonick HC, Krück F (1972) Natriuretisches Hormon. Klin Wochenschr 50:893–907

    PubMed  CAS  Google Scholar 

  • Krogh A, Landis EM, Turner AH (1932) The movement of fluid through the human capillary wall in relation to venous pressure and to the colloid osmotic pressure of the blood. J Clin Invest 11:63–71

    PubMed  CAS  Google Scholar 

  • Krück F (1969) Endogene Regulation des Natriumhaushaltes: In: Watschinger B (Hrsg) Aktuelle Probleme des Elektrolyt- und Wasserhaushaltes. Verlag der Wiener Med Akademie, S 131–144

    Google Scholar 

  • Laks MM, Garner D, Morady F, Swan HJC (1972) Hemodynamics in the conscious dog during progressive pulmonary arterial occlusion. Am J Physiol 22:570–578

    Google Scholar 

  • Landis EM (1928) Micro-injection studies of capillary wall to fluid and to the plasma proteins. Am J Physiol 83:528–536

    CAS  Google Scholar 

  • Landis EM (1946) Capillary permeability and the factors affecting the composition of the capillary ultrafiltrate. Ann NY Acad Sci 46:713–720

    CAS  Google Scholar 

  • Landis EM, Pappenheimer JR (1963) Exchange of substances through the capillary walls. In: Hamilton WF (ed) Handbook of physiology, Sect 2, vol 2. Williams & Wilkins, Baltimore, pp 961–1034

    Google Scholar 

  • Landis EM, Jonas L, Angevine M, Erb W (1932) The passage of fluid and protein through the human capillary wall during venous congestion. J Clin Invest 11:717–726

    PubMed  CAS  Google Scholar 

  • Landwehr DM, Klose RM, Giebisch G (1967) Renal tubular sodium and water reabsorption in the isotonic sodium chloride loaded rat. Am J Physiol 212:1327–1333

    PubMed  CAS  Google Scholar 

  • Laragh JH (1962) Hormones and the pathogeneses of congestive heart failure: Vasopressin, Aldosterone, and Angiotensin II. Circulation 25:1015–1023

    PubMed  CAS  Google Scholar 

  • Laragh JH, Cannon PJ (1962) Endocrine factors in congestive heart failure: Vasopressin, Aldosterone and Angiotensin. Med Clin North Am 46:1471–1482

    Google Scholar 

  • Lassiter WE, Mylle M, Gottschalk CW (1964) Net transtubular movement of water and urea in saline diuresis. Am J Physiol 206:669–678

    PubMed  CAS  Google Scholar 

  • Lavoie R, Gilbert G, Lafontaine R (1972) Cerebral arteriovenous fistula complicated by congestive heart failure in a five-month-old infant. Can Med Assoc J 107:220–227

    PubMed  CAS  Google Scholar 

  • Leaf A, Bartter FC, Santos RF, Wrong O (1953) Evidence in man that urinary electrolytes loss induced by pitressin is a function of water retention. J Clin Invest 32:868–876

    PubMed  CAS  Google Scholar 

  • Lebrie SJ, Mayerson HS (1960) Influence of elevated venous pressure on flow and composition of renal lymph. Am J Physiol 198:1037–1046

    PubMed  CAS  Google Scholar 

  • Leeber DA, Murdaugh HV, Davis BB (1968) Inhibition of sodium transport by Henle’s loop after intravenous saline infusion. J Lab Clin Med 72:220–229

    PubMed  CAS  Google Scholar 

  • Levine OR, Mellins RB, Senior RM, Fishman AP (1967) The application of Starling’s law of capillary exchange to the lungs. J Clin Invest 46:934–944

    PubMed  CAS  Google Scholar 

  • Levinsky N (1966) Non-aldosterone influences on renal sodium transport. Ann NY Acad Sci 139:295–302

    PubMed  CAS  Google Scholar 

  • Levinsky NG, Lalone RC (1963) Mechanism of sodium diuresis after saline infusion in dog. J Clin Invest 42:1261–1276

    PubMed  CAS  Google Scholar 

  • Levy M (1972) Effects of acute volume expansion and altered hemodynamics on renal tubular function in chronic caval dogs. J Clin Invest 51:922–938

    PubMed  CAS  Google Scholar 

  • Levy M (1974) Renal function in dogs with acute selective hepatic venous outflow block. Am J Physiol 227:1074–1082

    PubMed  CAS  Google Scholar 

  • Lewy JE, Windhager EE (1968) Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol 214:943–953

    PubMed  CAS  Google Scholar 

  • Lifschitz MD, Schrier RW (1973) Alterations in cardiac output with chronic constriction of thoracic inferior vena cava. Am J Physiol 225:1364–1372

    PubMed  CAS  Google Scholar 

  • Lindheimer MD, Lalone RC, Levinsky NG (1967) Evidence that an acute increase in glomerular filtration has little effect on sodium excretion in the dog unless extracellular volume is expanded. J Clin Invest 46:256–265

    PubMed  CAS  Google Scholar 

  • Lockett MF (1965) A comparison of the direct renal actions of pituitary growth and lactogenic hormones. J Physiol (Lond) 181:192–202

    CAS  Google Scholar 

  • Lockett MF, Nail B (1965) A comparative study of the renal actions of growth and lactogenic hormones in rats. J Physiol (Lond) 180:147–156

    CAS  Google Scholar 

  • Lommer D, Bette L, Blaise H, Düsterdieck G, Krück F, Jahnecke J, Schieffer H, Wolff HP (1966) Sekretion, Stoffwechsel und Exkretion des Aldosterons bei Normalpersonen, bei Hochdruckpatienten und bei Patienten mit Ödemen unterschiedlicher Genese. Verh Dtsch Ges Inn Med 72:457–461

    Google Scholar 

  • Lommer D, Düsterdieck G, Jahnecke J, Vecsei P, Wolff HP (1968) Sekretion, Plasmakonzentration, Verteilung, Stoffwechsel und Ausscheidung von Aldosteron bei Gesunden und Kranken. Klin Wochenschr 46:741–749

    PubMed  CAS  Google Scholar 

  • Low FN (1961) The extracellular position of the human blood-air barrier and its relation to tissue space. Anat Rec 139:105–123

    Google Scholar 

  • Ludwig C (1861) Lehrbuch der Physiologie des Menschen. Winter, Heidelberg, S 428

    Google Scholar 

  • Luetscher JA (1941) Electrophoretic analysis of the proteins of plasma and serous effusions. J Clin Invest 20:99–106

    PubMed  CAS  Google Scholar 

  • Luetscher JA Jr, Johnson BB (1954) Observations on sodium retaining corticoid (aldosterone) in urine of children and adults in relation to sodium balance and edema. J Clin Invest 33:1441–1446

    PubMed  CAS  Google Scholar 

  • Lundgren O, Lundwall J, Meilander S (1964) Range of sympathetic discharge and reflex vascular adjustments in skeletal muscle during hemorrhagic hypotension. Acta Physiol Scand 62:380

    PubMed  CAS  Google Scholar 

  • Luz PL Da, Shubin H, Weil MH, Jacobson E, Stein L (1975) Pulmonary edema related to changes in colloid osmotic and pulmonary artery wedge pressure in patients after acute myocardial infarction. Circulation 51:350–357

    Google Scholar 

  • Mackenzie J (1913) Diseases of the heart. Oxford Medical Publishers, London

    Google Scholar 

  • Magno M, Szidon JP (1976) Hemodynamic pulmonary edema in dogs with acute and chronic lymphatic ligation. Am J Physiol 231:1777–1782

    PubMed  CAS  Google Scholar 

  • Malik AB, Lee BC, Van der Zee H, Johnson A (1978) Mechanism of neurogenic pulmonary edema. Am Rev Respir Dis 117/2:367–375

    Google Scholar 

  • Mancia G, Romero JC, Shepherd JT (1975) Continuous inhibition of renin release in dogs by vagally innervated receptors in the cardio-pulmonary region. Circ Res 36:529–537

    PubMed  CAS  Google Scholar 

  • Margolius HS, Morowitz D, Geller RG, Alexander RW, Gill JR Jr, Pisano JJ, Keiser HR (1974) Urinary kallikrein excretion in normal man. Circ Res 35:812–819

    PubMed  CAS  Google Scholar 

  • Martino JA, Earley LE (1967) Demonstration of the role of physical factors as determinants of natriuretic response to volume expansion. J Clin Invest 46:1963–1978

    PubMed  CAS  Google Scholar 

  • Mason JM (1933) Extreme cardiac decompensation following traumatic arterio-venous fistula of left subclavian vessels. Am J Surg 20:451–454

    Google Scholar 

  • Mason JM, Ledsome JR (1974) Effects of obstruction of the mitral orifice or distension of the pulmonary vein-atrial junctions on renal and hindlimb vascular resistance in the dog. Circ Res 35:24–35

    PubMed  CAS  Google Scholar 

  • Mayerson HS (1963) The physiologic importance of lymph. In: Handbook of physiology, Sect II, vol II. Williams & Wilkins, Baltimore, pp 1035–1073

    Google Scholar 

  • McCance RA (1936) Experimental sodium chloride deficiency in man. Proc R Soc Lond [Biol] 119:245–256

    CAS  Google Scholar 

  • McDonald KM, Rosenthal A, Schrier RW, Galicich J, Lauler DP (1970) Effect of interruption of neural pathways on renal response to volume expansion. Am J Physiol 218:510–517

    PubMed  CAS  Google Scholar 

  • McKee FW, Wilt WG, Hyatt RE, Whipple GH (1950) The circulation of ascitic fluid. Interchange of plasma and ascitic fluid proteins as studied by means of C14 labeled lysine in dogs with constriction of the vena cava. J Exp Med 91:115–123

    PubMed  CAS  Google Scholar 

  • McKee FW, Vuile CL, Lamson BG, Whipple GH (1952) Albumin and globulin circulation in experimental ascites. Relative rates of interchange between plasma and ascitic fluid studied with C14 labeled protein. J Exp Med 95:161–169

    PubMed  CAS  Google Scholar 

  • McMaster PD (1943) The lymphatic system. Annu Rev Physiol 5:207–212

    Google Scholar 

  • McPeak EM, Levine SA (1946) The preponderance of right hydrothorax in congestive heart failure. Ann Intern Med 25:916–923

    PubMed  CAS  Google Scholar 

  • Meilander S, Öberg B (1967) Transcapillary fluid absorption and other vascular reactions in the human forearm during reduction of the circulating blood volume. Acta Physiol Scand 71:37–46

    Google Scholar 

  • Merrill AJ (1946) Edema and decreased renal blood flow in patients with chronic congestive heart failure: evidence of “forward failure” as the primary cause of edema. J Clin Invest 25:389–395

    Google Scholar 

  • Merrill AJ (1949) Mechanisms of salt and water retention in heart failure. Am J Med 6:357–366

    PubMed  Google Scholar 

  • Meyer BJ, Meyer A, Guyton AC (1968) Interstitial fluid pressure V. Negative pressure in the lung. Circ Res 22:263–271

    PubMed  CAS  Google Scholar 

  • Mills IH, Wardener de HE, Hayter CJ, Clapham WF (1961) Studies on the afferent mechanism of the sodium chloride diuresis which follows intravenous saline in the dog. Clin Sci 21:259–264

    PubMed  CAS  Google Scholar 

  • Mittelman J, Levy M (1972) Failure to demonstrate non-aldosterone salt-retaining substances in urine, plasma and liver extract of chronic caval dogs. Can J Physiol Pharmacol 50:1162–1169

    PubMed  CAS  Google Scholar 

  • Mokotoff RG, Ross G (1948) The effect of spinal anesthesia on the renal ischaemia in congestive heart failure. J Clin Invest 27:335–343

    CAS  Google Scholar 

  • Moseley P, Kohler JP, Rice CL, Schwartz JS, Gould S, Zarins CK, Kerstein MD, Moss GS (1979) Does sepsis reduce threshold hydrostatic pressure in pulmonary edema? Surg Forum 30:170–172

    PubMed  CAS  Google Scholar 

  • Mouw DR, Abraham SF, Blair-West JR, Coghlan JP, Denton DA, McKenzie JS, McKinley MJ, Scoggins BA (1974) Brain receptors, renin secretion and renal sodium retention in conscious sheep. Am J Physiol 226:56–63

    PubMed  CAS  Google Scholar 

  • Muenster JJ, Graettinger JS, Campbell JA (1959) Correlation of clinical and hemodynamic findings in patients with systemic arterio-venous fistulas. Circulation 20:1079–1086

    PubMed  CAS  Google Scholar 

  • Newman EV (1949) Function of the kidney and metabolic changes in cardiac failure. Am J Med 7:490–498

    PubMed  CAS  Google Scholar 

  • Nicolaysen G, Hauge A (1979) Determinants of transvascular fluid shifts in zone-I isolated rabbit lungs. Microvasc Res 17/2:113–119

    Google Scholar 

  • Nicoll PA, Webb RL (1955) Vascular patterns and active vasomotion as determiners of flow through minute vessels. Angiology 6:291–298

    PubMed  CAS  Google Scholar 

  • Nijima A (1969) Afferent discharge from osmoreceptors in the liver. Science 166:1519–1524

    Google Scholar 

  • Nijima A (1975) Observation on the localization of mechanoreceptors in the kidney and afferent nerve fibers in the renal nerves in the rabbit. J Physiol (Lond) 245:81–89

    Google Scholar 

  • Nitta S, Staub NC (1973) Lung fluids in acute ammonium chloride toxicity and edema in cats and guinea pigs. Am J Physiol 224:613–617

    PubMed  CAS  Google Scholar 

  • Nix JT, Mann FC, Bollman JL, Grindlay JH, Flock EV (1951) Alteration of protein constituents of lymph by specific injury to the liver. Am J Physiol 164:119–127

    PubMed  CAS  Google Scholar 

  • Öberg B (1964) Effects of cardiovascular reflexes on net capillary fluid transfer. Acta Physiol Scand [Suppl] 62:229–236

    Google Scholar 

  • Öberg B, Rosell S (1967) Sympathetic control of consecutive vascular sections in canine subcutaneous adipose tissue. Acta Physiol Scand 71:47–56

    PubMed  Google Scholar 

  • Öberg B, White S (1970) Circulatory effects of interruption and stimulation of cardiac vagal afferents. Acta Physiol Scand 80:383–390

    PubMed  Google Scholar 

  • Ölkers HA (1931a) Hormonale Beeinflussung des kolloid-osmotischen Druckes (Kolloidosmotischer Druck und Diurese). Arch Exp Pathol Ther 160:9–16

    Google Scholar 

  • Ölkers HA (1931b) Untersuchungen über den kolloid-osmotischen Druck des Serums. Z Klin Med 115:854

    Google Scholar 

  • Ogletree ML, Brigham KL (1979) Prostacyclin (PGI2) and PGE1 produce opposite effects on sheep lung vascular permeability. Fed Proc 38/11:1266–1273

    Google Scholar 

  • Oparil S, Haber E (1974) The renin-angiotensin system. N Engl J Med 291:389–401

    PubMed  CAS  Google Scholar 

  • Orloff MJ, Ross TH, Baddeley RM, Nutting RO, Spitz BR, Sloop RD, Neesby T, Halasz NA (1964) Experimental ascites. VI The effects of hepatic venous outflow obstruction and ascites on aldosterone secretion. Surgery 56:83–92

    PubMed  CAS  Google Scholar 

  • Orloff MJ, Lipman CA, Noel SM, Halasz NA, Neesby T (1965) Hepatic regulation of aldosterone secretion by a humoral mediator. Surgery 58:225–231

    PubMed  CAS  Google Scholar 

  • Paine SA, Peters JP (1932) The plasma proteins in relation to blood hydration. VIII Serumproteins in heart disease. J Clin Invest 11:103–111

    Google Scholar 

  • Pappenheimer JR (1953) Passage of molecules through capillary walls. Physiol Rev 33:387–396

    PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Sotorivera A (1948) Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am J Physiol 152:471–482

    PubMed  CAS  Google Scholar 

  • Parsons RJ, McMaster PHD (1938) The effect of the pulse upon the formation and flow of lymph. J Exp Med 68:355–362

    Google Scholar 

  • Peters JP (1948) The role of sodium in the production of edema. N Engl J Med 239:353–362

    PubMed  CAS  Google Scholar 

  • Peters JP (1952) The problem of cardiac edema. Am J Med 12:66–76

    PubMed  CAS  Google Scholar 

  • Piper PJ, Vane JR (1971) The release of prostaglandins from lung and other tissues. Ann NY Acad Sci 180:363–383

    PubMed  CAS  Google Scholar 

  • Prentice TC, Berlin NI, Hyde GM, Parsons RJ, Lawrence JH, Port S (1951) Total red cell volume, plasma volume and sodium space in congestive heart failure. J Clin Invest 30:1471–1479

    PubMed  CAS  Google Scholar 

  • Prentice THC, Siri W, Joiner EE (1952) Quantitative studies of ascitic fluid circulation with tritium-labeled water. Am J Med 13:668–675

    PubMed  CAS  Google Scholar 

  • Randall RE Jr, Papper S (1958) Mechanism of postoperative limitation in sodium excretion : role of extracellular fluid volume and of adrenal cortical activity. J Clin Invest 37:1628–1641

    PubMed  Google Scholar 

  • Rector FC Jr, Van Giesen G, Kiil F, Seidin DW (1964) Influence of expansion of extracellular volume on tubular reabsorption of sodium independent of changes in glomerular filtration rate and aldosterone activity. J Clin Invest 43:341–348

    PubMed  CAS  Google Scholar 

  • Reid L (1968) Structural and functional reappraisal of the pulmonary artery system. Scientific Basis Med Annu Rev, pp 289–307

    Google Scholar 

  • Relman AS, Schwartz WB (1952) The effect of DOCA on electrolyte balance in normal man and its relation to sodium chloride intake. Yale J Biol Med 24:540–558

    PubMed  CAS  Google Scholar 

  • Renkin EM (1977) Multiple pathways of capillary-permeability. Circ Res 41:735–743

    PubMed  CAS  Google Scholar 

  • Renkin EM, Pappenheimer JR (1957) Wasserdurchlässigkeit und Permeabilität der Capillarwände. Ergeb Physiol 49:59–67

    PubMed  CAS  Google Scholar 

  • Renkin EM, Rosell S (1962) Effects of different types of vasodilator mechanisms on vascular tonus and on transcapillary exchange of diffusible material in skeletal muscle. Acta Physiol Scand 54:241–250

    PubMed  CAS  Google Scholar 

  • Renold AE, Crabbe J, Hernando-Avendano L, Nelson DH, Ross EJ, Emerson K Jr, Thorn GW (1957) Inhibition of aldosterone secretions by amphenone in man. N Engl J Med 256:16–23

    PubMed  Google Scholar 

  • Robin ED, Cross CE, Zelis R (1973) Pulmonary edema. N Engl J Med 288:239–246

    PubMed  CAS  Google Scholar 

  • Rocha e Silva M Jr, Rosenberg M (1969) The release of vasopressin in response to hemorrhage and its role in the mechanism of blood pressure regulation. J Physiol (Lond) 202:535–543

    CAS  Google Scholar 

  • Rosenbaum JD, Papper S, Ashley MM (1955) Variations in renal excretion of sodium independent of change in adrenocortical hormone dosage in patients with Addison’s disease. J Clin Endocrinol Metab 15:1459–1474

    PubMed  CAS  Google Scholar 

  • Rouffignac de C, Bonvalet JP (1974) Heterogeneity of nephron population. In: Thurau K (ed) Kidney and urinary tract physiology. MTP International Review of Science, vol 6. Butterworth, London, p 394

    Google Scholar 

  • Rowe AH (1917) Refractometric studies of serum proteins in nephritis, cardiac decompensation, diabetes, anemia and other chronic diseases. Arch Intern Med 19:354–362

    CAS  Google Scholar 

  • Ruszniak I, Földi M, Szabo G (1957) Physiologie und Pathologie des Lymphkreislaufs. Fischer, Jena

    Google Scholar 

  • Rutenberg HL, Spann JF Jr (1973) Alterations of cardiac sympathetic neurotransmitter activity in congestive heart failure. Am J Cardiol 32:472–486

    PubMed  CAS  Google Scholar 

  • Ryan SF (1969) The structure of the interalveolar septum of the mammalian lung. Anat Rec 165:467–473

    PubMed  CAS  Google Scholar 

  • Said SI (1978) Environmental injury of the lung: Role of humoral mediators. Fed Proc 37:3504–3507

    Google Scholar 

  • Salvesen HA, Linder GC (1923) Observations on the inorganic bases and phosphates in relation to the protein of blood and other body fluids in Bright’s disease and in heart failure. J Biol Chem 58:617–623

    CAS  Google Scholar 

  • Schedl HP, Bartter FC (1960) An explanation for and experimental correction of the abnormal water diuresis in cirrhosis. J Clin Invest 39:248–261

    PubMed  CAS  Google Scholar 

  • Schilling JA, McCoord AB, Clausen SW, Troup SB, McKee FW (1952) Experimental ascites. Studies of electrolyte balance in dogs with partial and complete occlusion of the portal vein and of the vena cava above and below the liver. J Clin Invest 31:702–711

    PubMed  CAS  Google Scholar 

  • Schmidt RW, Bourgoignie JJ, Bricker NS (1974) On the adaptation in sodium excretion in chronic uraemia. The effects of proportional production of sodium intake. J Clin Invest 53:1736–1744

    PubMed  CAS  Google Scholar 

  • Schneeberger EE, Karnowsky MJ (1976) Substructure of intercellular junctions in freezefractured alveolar-capillary membranes of mouse lung. Circ Res 38:404–411

    PubMed  CAS  Google Scholar 

  • Schneider EG, Dresser TP, Lynch RE, Knox FG (1971) Sodium reabsorption by the proximal tubule of dogs with experimental heart failure. Am J Physiol 220:952–957

    PubMed  CAS  Google Scholar 

  • Schrier RW (1974) Effects of adrenergic nervous system and catecholamines on systemic and renal hemodynamics, sodium and water excretion and renin secretion. Kidney Int 6:291–299

    PubMed  CAS  Google Scholar 

  • Schrier RW, Humphreys MH (1971) Factors involved in the antinatriuretic effects of acute constriction of the thoracic and abdominal inferior vena cava. Circ Res 29:479–489

    PubMed  CAS  Google Scholar 

  • Schrier RW, Wardener de HE (1971) Tubular reabsorption of sodium ion. N Engl J Med 285:1231–1303

    PubMed  CAS  Google Scholar 

  • Schrier RW, McDonald KM, Jagger PI, Lauler DP (1967) The role of the adrenergic nervous system in the renal response to acute extracellular volume expansion. Proc Soc Exp Biol Med 125:1157–1162

    PubMed  CAS  Google Scholar 

  • Schröder R (1963) Untersuchungen über das Verhalten der Nebennierenrindenhormone bei hydropischer Herzinsuffizienz. Dtsch Arch Klin Med 209:20–28

    Google Scholar 

  • Schwiegk H, Riecker G (1960) In: Bergman G von, Frey W, Schwiegk H (Hrsg) Handbuch der inneren Medizin, 4. Aufl, Bd IX/1. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Sedläkova E, Prusik Z, Skopova J, Barth T, Kluh I, Cort JH (1974) Isolation of a tridecapeptide from natriuretic fractions of bovine posterior pituitary. Eur J Clin Invest 4:285–294

    PubMed  Google Scholar 

  • Seely JF (1973) Effects of peritubular oncotic pressure on rat proximal tubule electrical resistance. Kidney Int 4:28–36

    PubMed  CAS  Google Scholar 

  • Segar WE, Moore WW (1968) The regulation of antidiuretic hormone release in man. J Clin Invest 47:2143–2150

    PubMed  CAS  Google Scholar 

  • Seymour WB, Pritchard WH, Longley LP, Hayman JM Jr (1942) Cardiac output, blood and interstitial fluid volumes, total circulating serum protein and kidney function during cardiac failure and after improvement. J Clin Invest 21:229–236

    PubMed  CAS  Google Scholar 

  • Share L (1967a) Vasopressin: its bioassay and the physiological control of its release. Am JMed 42:701–711

    CAS  Google Scholar 

  • Share L (1967b) Role of peripheral receptors in the increased volume of vasopressin in response to hemorrhage. Endocrinology 81:1140–1149

    CAS  Google Scholar 

  • Share L, Claybaugh JR (1972) Regulation of body fluids. Annu Rev Physiol 34:235–243

    PubMed  CAS  Google Scholar 

  • Sharp GWG, Leaf A (1964) Biological action of aldosterone in vitro. Nature 202:1185–1188

    PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1975) Permeability of muscle capillaries to small hemepeptides. Evidence for the existence of patent transendothelial channels. J Cell Biol 64:586–607

    PubMed  CAS  Google Scholar 

  • Skinner SL, McCubbin JW, Page IH (1964) Control of renin secretion. Circ Res 15:64–73

    PubMed  CAS  Google Scholar 

  • Smirk FH (1936) Observations on the causes of edema in congestive heart failure. Clin Sci 2:317–325

    CAS  Google Scholar 

  • Smith HW (1951) The kidney: Structure and function in health and disease. Oxford University Press, New York, pp 544–545

    Google Scholar 

  • Smith HW (1957) Salt and water volume receptors. Am J Med 23:623–631

    PubMed  CAS  Google Scholar 

  • Snashall PD, Weidner WJ, Staub NC (1977) Extravascular lung water after extracellular fluid volume expansion in dogs. J Appl Physiol 42:624–629

    PubMed  CAS  Google Scholar 

  • Spät A, Saliga M, Sturcz J, Sólyom J (1963) Effect of aldosterone on intestinal transport of sodium and potassium. Lancet 2:96–99

    Google Scholar 

  • Spealman CR, Newton M, Post RL (1947) Influence of environmental temperature and posture on volume and composition of blood. Am J Physiol 150:628–635

    PubMed  CAS  Google Scholar 

  • Spitzer A, Windhager EE (1970) Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption. Am J Physiol 218:1188–1197

    PubMed  CAS  Google Scholar 

  • Starling EH (1896a) Physiological factors involved in the causation of dropsy. The production of lymph. Lancet II:1267–1273

    Google Scholar 

  • Starling EH (1896b) The absorption of fluids from the connective tissue spaces. Lancet II:1331–1338

    Google Scholar 

  • Starling EH (1896c) Physiological factors involved in the causation of dropsy. Lancet II:1405–1409

    Google Scholar 

  • Starling EH (1909) The fluids of the body. The Herter Lectures, Keener, Chicago

    Google Scholar 

  • Starr J Jr, Jeffers WA, Meade RH Jr (1943) The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive heart failure and heart disease. Am Heart J 26:291–302

    Google Scholar 

  • Staub NC (1971) Steady state pulmonary transvascular water filtration in unanaesthetized sheep. Circ Res [Suppl I] 28/29:135–139

    Google Scholar 

  • Staub NC (1974) Pulmonary edema. Physiol Rev 54:678–811

    PubMed  CAS  Google Scholar 

  • Staub NC (1978a) Pulmonary edema due to increased microvascular permeability to fluid and proteins. Circ Res 43:143–151

    CAS  Google Scholar 

  • Staub NC (1978b) Pulmonary edema. Physiologic approaches to management. Chest 74:559–564

    CAS  Google Scholar 

  • Staub NC (1979) Pathways for fluid and solute fluxes in pulmonary edema. In: Fishman AP, Renkin EM (eds) Pulmonary edema. American Physiological Society, Bethesda, pp 113–124

    Google Scholar 

  • Staub NC (1980) The pathogenesis of pulmonary edema. Prog Cardiovasc Dis 23:53–80

    PubMed  CAS  Google Scholar 

  • Staub NC, Nagano H, Pearce ML (1967) Pulmonary edema in dogs especially the sequence of fluid accumulation in the lungs. J Appl Physiol 22:227–240

    PubMed  CAS  Google Scholar 

  • Stead EA, Warren JV (1944) The protein content of the extracellular fluid in normal subjects after venous congestion and in patients with cardiac failure, anoxemia and fever. J Clin Invest 23:283–294

    PubMed  CAS  Google Scholar 

  • Steele JM, Berger EY (1951) Evidence for desoxycorticosteronelike activity in the accumulation of edema. Trans Assoc Am Physicians 64:262–270

    PubMed  CAS  Google Scholar 

  • Stein JH, Reineck HJ (1975) Effect of alterations in extracellular fluid volume on segmentai sodium transport. Physiol Rev 55:127–138

    CAS  Google Scholar 

  • Stein RM, Abramson RG, Kahn T, Levitt MF (1967) Effects of hypotonic saline loading in hydrated dog: evidence for a saline-induced limit on distal tubular sodium transport. J Clin Invest 46:1205–1214

    PubMed  CAS  Google Scholar 

  • Stein JH, Osgood RW, Boonjaren S, Ferris TF (1973) A comparison of the sequential analysis of sodium reabsorption during Ringer’s and hyperoncotic albumin infusion in the rat. J Clin Invest 52:2313–2319

    PubMed  CAS  Google Scholar 

  • Strandhoy JW, Wiliamson HE (1970) Evidence for an hepatic role in the control of sodium excretion. Proc Soc Exp Biol Med 133:419–424

    PubMed  CAS  Google Scholar 

  • Strandhoy TW, Schneider EG, Willis LR, Know FG (1974) Intrarenal effects of phenoxybenzamine on sodium reabsorption. J Lab Clin Med 83:263–274

    PubMed  CAS  Google Scholar 

  • Strauss MB, Earley LE (1959) An enquiry into the role of sodium retaining steroids in the homeostasis of body sodium in man. Trans Assoc Am Physicians 72:200–206

    CAS  Google Scholar 

  • Stumpe KO, Krück F (1970) Ödempathogenese. Hämodynamische und humorale Faktoren. In: Brunner W, Kappert A, May R, Schoop W, Witzleb E (Hrsg) Das dicke Bein. Aktuelle Probleme in der Angiologie, Bd 9. Bern Stuttgart Wien, S 32–46

    Google Scholar 

  • Stumpe KO, Sölle H, Klein H, Krück F (1973) Mechanism of sodium and water retention in rats with experimental heart failure. Kidney Int 4:309–317

    PubMed  CAS  Google Scholar 

  • Stumpe KO, Reinelt B, Ressel C, Klein H, Krück F (1974) Urinary sodium excretion and proximal tubule reabsorption in rats with high output failure. Nephron 12:261–274

    PubMed  CAS  Google Scholar 

  • Surtshin A, Rolf D, White HL (1951) Constancy of sodium excretion in presence of chronically altered glomerular filtration rate. Am J Physiol 165:429–433

    PubMed  CAS  Google Scholar 

  • Tait JF, Bougas J, Little B, Tait SAS, Flood C (1965) Splanchnic extraction and clearance of aldosterone in subjects with minimal and marked cardiac dysfunction. J Clin Endocrinol 25:219–226

    CAS  Google Scholar 

  • Taylor RR, Covell JW, Ross J Jr (1968) Left ventricular function in experimental aortocaval fistula with circulatory congestion and fluid retention. J Clin Invest 47:1333–1342

    PubMed  CAS  Google Scholar 

  • Tobian L, Coffee K, Ferreira D, Meuli J (1964) The effect of renal perfusion pressure on the net transport of sodium out of distal tubular urine as studied with the stop-flow technique. J Clin Invest 43:118–127

    PubMed  CAS  Google Scholar 

  • Toshima H, Yokota Y (1979) Clinics of edema. Pathogenesis of cardiac edema — with respect to role of hypoproteinemia. Jpn J Med 18:37–41

    Google Scholar 

  • Uchida J, Kamisaha K, Heda H (1971) Two types of renal mechanoreceptors. Jpn Heart J 12:233–240

    PubMed  CAS  Google Scholar 

  • Vander AJ (1967) Control of renin release. Physiol Rev 47:359–382

    PubMed  CAS  Google Scholar 

  • Vander AJ, Malvin RL, Wilde WS, Sullivan LP (1958) Re-examination of salt and water retention in congestive heart failure. Am J Med 25:497–502

    PubMed  CAS  Google Scholar 

  • Vereerstraeten P, Myttenaere de M (1968) Effect of raising the transtubular oncotic gradient on sodium excretion in the dog. Pfluegers Arch 302:1–12

    CAS  Google Scholar 

  • Vereerstraeten P, Toussaint C (1968) Role of the peritubular oncotic pressure on sodium excretion by the pavian kidney. Pfluegers Arch 302:13–21

    CAS  Google Scholar 

  • Verney EB (1947) The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond [Biol] 135:25–32

    CAS  Google Scholar 

  • Viskoper JR, Czaczkes JW, Schwartz N, Ullman TD (1971) Natriuretic activity of a substance isolated from human urine during the excretion of a salt load. Nephron 8:540–552

    PubMed  CAS  Google Scholar 

  • Visscher MB, Haddy FJ, Stephens G (1956) The physiology and pharmacology of lung edema. Pharmacol Rev 8:389–434

    PubMed  CAS  Google Scholar 

  • Vogel G, Heym E (1956) Untersuchungen zur Bedeutung kolloidosmotischer Druckdifferenzen für den Mechanismus der isoosmotischen Flüssigkeitsresorption in der Niere. Pfluegers Arch 262:226–236

    CAS  Google Scholar 

  • Volwiler W, Grindlay JH, Bollman JL (1950) The relation of portal vein pressure to the formation of ascites — an experimental study. Gastroenterology 14:40–48

    PubMed  CAS  Google Scholar 

  • Wallin JD, Lee PA (1976) Effect of prolactin on diluting and concentrating ability in the rat. Am J Physiol 230:1524–1533

    PubMed  CAS  Google Scholar 

  • Walser M, Duffy BJ Jr, Griffm HW (1956) Body fluids in hypertension and mild heart failure. JAMA 160:858–864

    CAS  Google Scholar 

  • Wardener de HE, Mills IH, Clapham WF, Hayter CJ (1961) Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline to the dog. Clin Sci 21:249–258

    Google Scholar 

  • Warren JV, Stead EA (1944) Fluid dynamics in chronic congestive heart failure: an interpretation of the mechanisms producing edema, increased plasma volume and elevated venous pressure in certain patients with prolonged congestive failure. Arch Intern Med 73:138–147

    Google Scholar 

  • Warren MF, Peterson DK, Drinker CK (1942) The effects of heightened negative pressure in the chest together with further experiments upon anoxia in increasing the flow of lung lymph. Am J Physiol 137:641–648

    Google Scholar 

  • Waterfleld RL (1931a) The effects of posture on the circulating blood volume. J Physiol (Lond) 72:110–120

    Google Scholar 

  • Waterfield RL (1931b) The effect of posture on the volume of the leg. J Physiol (Lond) 72:121–128

    CAS  Google Scholar 

  • Weber PC, Siss W, Scherer B (1979) Vaskuläre, thrombozytäre und renale Prostaglandine. Biochemie, Funktion, klinische Aspekte. Klin Wochenschr 57:425–444

    PubMed  CAS  Google Scholar 

  • Wegria R, Paiewonsky D, Entrup R, Hughes M, Jue J, Fallat, R (1960) Effect of acute cardiac tamponade on the formation and evacuation of lymph. Am J Physiol 210:1442–1451

    Google Scholar 

  • Wegria R, Zekert H, Walter KE, Entrup RW, de Schryver C, Kennedy W, Paiewonsky D (1963) Effect of systemic venous pressure on drainage of lymph from the thoracic duct. Am J Physiol 204:284–293

    PubMed  CAS  Google Scholar 

  • Wegria R, Entrup RW, Jue J, Hughes M (1967) A new factor in pathogenesis of edema of cardiac origin. Am J Physiol 213:94–103

    PubMed  CAS  Google Scholar 

  • Weibel ER, Bachofen H (1979) Structural design of the alveolar septum and fluid exchange. In: Fishman AP, Renkin EM (eds) Pulmonary edema. American Physiological Society, Bethesda, pp 1–20

    Google Scholar 

  • Welt LG (1960) Volume receptors. Circulation 21:1002–1012

    PubMed  CAS  Google Scholar 

  • Werko L, Varnauskas E, Eliasch H, Ek J, Bucht H, Thomason B, Bergstioni J (1954) Studies on the renal circulation and renal function in mitral valvular disease. I. Effect of exercise. Circulation 9:687–695

    PubMed  CAS  Google Scholar 

  • Wesson LG Jr (1969) Physiology of the human kidney. Grune & Stratton, New York, p 591

    Google Scholar 

  • Weston RE (1972) Pathogenesis and treatment of edema with special reference to use of diuretics. In: Maxwell MH, Kleeman CR (eds) Clinical disorders of fluid and electrolyte metabolism, 2nd edn. McGraw-Hill, New York, pp 382–426

    Google Scholar 

  • White AG, Gordon H, Leiter L (1950) Studies in edema. II. The effect of congestive heart failure on saliva electrolyte concentrations. J Clin Invest 29:1445–1453

    PubMed  CAS  Google Scholar 

  • Wiederhielm CA (1968) Dynamics of transcapillary fluid exchange. J Gen Physiol 52:29–62

    PubMed  CAS  Google Scholar 

  • Wiederhielm CA, Woodbury JW, Kirk S, Rushmer RF (1964) Pulsatile pressures in the microcirculation of frog’s mesentery. Am J Physiol 207:173–180

    PubMed  CAS  Google Scholar 

  • Wiles GE, Shenk WG, Lindenberg J (1952) The experimental production of portal hypertension. Ann Surg 136:811–819

    PubMed  Google Scholar 

  • Witte CHL, Witte MH, Dumont AE, Cole WR, Smith JR (1969) Protein content in lymph and edema fluids in congestive heart failure. Circulation 40:623–631

    PubMed  CAS  Google Scholar 

  • Wolf G, McGovern GF, Dicara LV (1974) Sodium appetite: some conceptual and methodological aspects of a model drive system. Behav Biol 10:27–34

    PubMed  CAS  Google Scholar 

  • Wolff HP (1965) Aldosterone in congestive heart failure. Acta Cardiol (Brux) 20:424–432

    CAS  Google Scholar 

  • Wolff HP, Bette L, Blaise H, Düsterdieck G, Jahnecke J, Kobayashi T, Krück F, Lommer D, Schieffer H (1966) Role of aldosterone in edema formation. Ann NY Acad Sci 139:285–294

    PubMed  CAS  Google Scholar 

  • Woolverton NC, Brigham KL, Staub NC (1978) Effect of positive pressure breathing on lung lymph flow and water content in sheep. Circ Res 42:550–557

    PubMed  CAS  Google Scholar 

  • Wray NP, Nicotra MB (1978) Pathogenesis of neurogenic pulmonary edema. Am Rev Respir Dis 118:783–786

    PubMed  CAS  Google Scholar 

  • Wuhrmann F, Wunderly CH (1952) Die Bluteiweißkörper des Menschen. Basel

    Google Scholar 

  • Yamada S (1933) Über die seröse Flüssigkeit in der Pleurahöhle der gesunden Menschen. Z Ges Exp Med 90:342–350

    CAS  Google Scholar 

  • Zins GR (1975) Renal prostaglandins. Am J Med 58:14–22

    PubMed  CAS  Google Scholar 

  • Zusman RM, Keiser HR (1977) Prostaglandin E2 biosynthesis by rabbit renomedullary interstitial cells in tissue culture. Mechanism of stimulation by angiotensin II, bradykinin, and arginine vasopressin. J Biol Chem 252:2069–2078

    PubMed  CAS  Google Scholar 

  • Zweifach BW (1961) Functional behavior of the microcirculation. Thomas, Springfield

    Google Scholar 

Download references

Authors

Editor information

G. Autenrieth R. Bayer D. W. Behrenbeck G. Biamino H.-D. Bolte F. Burkart W.-D. Bussmann J. Cyran E. Erdmann B. Heierli F. Krück Th. Linderer G. Rahlf G. Riecker R. Schröder G. Steinbeck B. E. Strauer K. O. Stumpe E. Uhlich J. Zähringer

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stumpe, K.O. (1984). Die Pathogenese des kardialen Ödems. In: Autenrieth, G., et al. Herzinsuffizienz. Handbuch der inneren Medizin, vol 9 / 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82183-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82183-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82184-4

  • Online ISBN: 978-3-642-82183-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics