Acoustic Absorption Due to Hydrogen Tunneling in NbN0.0015H0.0025

  • J. L. Wang
  • G. Weiss
  • H. Wipf
  • A. Magerl
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 51)


Some years ago it was found that doping of niobium with hydrogen gives rise to excess specific heat around and below 1 K [1]. At corresponding temperatures the thermal phonon mean free path was reduced by an order of magnitude. This has been interpreted as resonant scattering of thermal phonons by the discrete set of energy levels associated with interstitial motion of H or D atoms [2]. Meanwhile it could be demonstrated that these thermal anomalies induced by hydrogen are strongly intensified by the additional presence of N interstitials [3,4]. N (or 0) impurities act as trapping centers, and at low temperatures the hydrogen is still able to tunnel between adjacent interstitial sites around the trapping atoms. This tunneling has directly been observed in inelastic neutron scattering experiments on Nb doped with 0 and H [5].


Relaxation Rate Physical Acoustics Energy Splitting Relaxation Peak Resonant Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.J.Sellers, A.C.Anderson, H.K.Birnbaum: Phys.Rev.B 10, 2771 (1974)CrossRefADSGoogle Scholar
  2. 2.
    S.G.O’Hara, G.J.Sellers, A.C.Anderson: Phys.REv. B 10 2777 (1974)CrossRefADSGoogle Scholar
  3. 3.
    C.Morkel, H.Wipf, K.Neumaier: Phys.Rev.Lett. 40, 947 (1978)CrossRefADSGoogle Scholar
  4. 4.
    M. Locatelli, K.Neumaier, H.Wipf: Physiqûe 39, C6–995 (1978)Google Scholar
  5. 5.
    H.Wipf, A.Magerl,S.M.Shapiro, S.K.Satija, W.ThomTïnson: Phys.Rev.Lett. 46, 947 (1981)CrossRefADSGoogle Scholar
  6. 6.
    SB.Poker, G.G.Setser, A.V.Granato, H.K.Birnbaum: Z.Phys.Chem. 116, 39 (1979)CrossRefGoogle Scholar
  7. 7.
    G.Cannelli, R.Cantelli: Solid State Comm. 43, 567 (1982)CrossRefADSGoogle Scholar
  8. 8.
    G.Bellessa: J.d.Physique 44, L-387 (1983)Google Scholar
  9. 9.
    G.Weiss, S.Hunklinger, H.v.Löhneysen: Physica 109&110 B+C, 1946 (1982)Google Scholar
  10. 10.
    W.P. Mason in Physical Acoustics, Vol. IVA, p. 299, ed. W.P.Mason, Academic Press, N.Y. (1966)Google Scholar
  11. 11.
    S. Hunklinger, W.Arnold in Physical Acoustics, Vol. XII, eds. W.P.Mason and R.N.Thurston, Academic Press, N.Y. (1976)Google Scholar
  12. 12.
    J.L.Black, P.Fulde: Phys.Rev.Lett. 43, 453 (1979)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • J. L. Wang
    • 1
  • G. Weiss
    • 2
  • H. Wipf
    • 3
  • A. Magerl
    • 4
  1. 1.Pohl InstituteTongji UniversityShanghaiChina
  2. 2.Institut für Angewandte Physik IIUniversität HeidelbergHeidelbergFed. Rep. of Germany
  3. 3.Physik-Department E19Technische Universität MünchenMünchenFed. Rep. of Germany
  4. 4.Institut Laue-LangevinGrenobleFrance

Personalised recommendations