Ultrasonic-Attenuation and Pressure Measurements in Phase-Separated Solid 3He-4He Mixtures

  • I. Iwasa
  • H. Suzuki
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 51)


The phase separation of solid 3He-4He mixtures is known to obey fairly well the regular solution theory, in which the phase separation temperature TPS is given by
$$ {T_{PS}} = 2{T_c}(1 - 2{X_4})/1n((1 - {X_4})/{X_4}).$$
Here X4 is the atomic concentration of 4He and Tc = 0.38 K is the critical temperature [1]. MULLIN [2] made a more detailed theory of phase separation based on the self-consistent phonon theory and found an excess volume on mixing ΔV given by
$$ \Delta V = - 0.4{X_4}(1 - {X_4})[c{m^3}/mole].$$
He predicted a pressure increase on phase separation at a constant volume, which was verified by PANCZYK et al. [3] by using a capacitive strain gauge.


Anisotropy Attenuation Acoustics Aniso 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.O. Edwards, A.S. McWilliams and J.G. Daunt: Phys. Rev. Lett 9, 195 (1962).CrossRefADSGoogle Scholar
  2. 2.
    W.J. Mullin: Phys. Rev. Lett. 20, 254 (1968).CrossRefADSGoogle Scholar
  3. 3.
    M.F. Panczyk, R.A. Scribner, J.R. Gonano and E.D. Adams: Phys. Rev. Lett. 21, 594 (1968).CrossRefADSGoogle Scholar
  4. 4.
    A.S. Greenberg and A. Armstrong: Phys. Rev. B22, 4336 (1980).Google Scholar
  5. 5.
    I. Iwasa, N. Saito and H. Suzuki: J. Phys. Soc. Jpn. 52, 952 (1983).CrossRefADSGoogle Scholar
  6. 6.
    B.A. Fraas and R.O. Simmons: Physica 107B, 277 (1981).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • I. Iwasa
    • 1
  • H. Suzuki
    • 1
  1. 1.Department of PhysicsUniversity of TokyoBunkyo-ku Tokyo 113Japan

Personalised recommendations