Phonon-Induced Desorption of Helium

  • P. Taborek
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 51)

Abstract

Phonons from a solid substrate can interact with the atoms in an adsorbed film and cause them to be desorbed; understanding the microscopic mechanism of this process is one of the basic goals of surface science. Desorption of helium at low temperatures is a particularly simple and interesting system for testing our understanding of the phonon-adsorbate interaction. The binding energy of helium to a substrate is smaller than any other adatom, and the magnitude and shape of the binding potential is well known for many surfaces. Because helium is so weakly bound to a surface, it also has the unique property that it is energetically possible for a single substrate phonon to desorb an atom in a photo-electric effect type of process. The helium system also offers experimental advantages over more traditional desorption investigations using heavier adsorbates. The low-temperature techniques of ballistic phonon scattering which provide a means of controlling the frequency, intensity, duration, polarization and wave vector of the desorbing phonons provide a much more detailed probe of the desorption process than high-temperature experiments can possibly achieve. Using these techniques, one can generate both equilibrium and non-equilibrium substrate phonon distributions and detect the phonon-induced desorption of sub-monolayer helium films. The experimental apparatus and a typical desorption signal are illustrated in Figs. 1 and 2. Previous experimental work is described in references [1–4].

Keywords

Helium Sapphire Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Andres, R. C. Dynes, and V. Narayanamurti, Phys. Rev. A8, 2 501 (1977).Google Scholar
  2. 2.
    G. N. Crisp, R. A. Sherlock, and A. F. G. Wyatt, Low Temp Physics 14, eds. M. Krusius and M. Vuorio ( North-Holland, Amsterdam, 1975 ) p. 455.Google Scholar
  3. 3.
    P. Taborek, M. Sinvani, M. Weimer, and D. Goodstein, J. Phys. (Paris) C6 pp. 825, 852, and 855 (1981).Google Scholar
  4. 4.
    P. Taborek, M. Sinvani, M. Weimer, and D. Goostein, Physica 107B, 247, (1981).Google Scholar
  5. 5.
    M. Sinvani, P. Taborek, and D. Goodstein, Phys. Rev. Lett., 48, 1259 (1982).CrossRefADSGoogle Scholar
  6. 6.
    P. Taborek, Phys. Rev. Lett., 48, 1737 (1982).CrossRefADSGoogle Scholar
  7. 7.
    M. Sinvani, P. Taborek, and D. Goodstein, Phys. Lett., 95A, 59 (1983).CrossRefGoogle Scholar
  8. 8.
    M. Sinvani, D. L. Goodstein, M. W. Cole, and P. Taborek, Whys. Rev. B, to be published.Google Scholar
  9. 9.
    M. Weimer and D. Goodstein, Phys. Rev. Lett. 50, 193, (1983).CrossRefADSGoogle Scholar
  10. 10.
    J. E. Lennard-Jones and C. Strachan, Proc. Roy. Soc. (London) A150, 442 (1935).CrossRefMATHADSGoogle Scholar
  11. 11.
    B. Bendow and S. C. Ying, Phys. Rev. B7, 622 (1973).CrossRefADSGoogle Scholar
  12. 12.
    F. O. Goodman and I. Romero, J. Chem. Phys. 69, 1086 (1978).CrossRefADSGoogle Scholar
  13. 13.
    Z. W. Gortel, H. J. Kreuzer, and D. Spaner, J. Chem. Phys., 72, 234 (1980).CrossRefADSGoogle Scholar
  14. 14.
    Z. W. Gortel, H. J. Kreuzer, and R. Teshima, Phys. Rev. B 22, 5655, (1980).CrossRefADSGoogle Scholar
  15. 15.
    F. O. Goodman, Phys. Rev. B27, 6478, (1983).CrossRefADSGoogle Scholar
  16. 16.
    J. P. Cowin, D. J. Averbach, C. Becker, and L. Wharton, Surf. Sci. 78, 545 (1978).CrossRefADSGoogle Scholar
  17. 17.
    V. Narayanamurti and R. C. Dynes, Phys. Rev. Lett. 27, 410, (1971).CrossRefADSGoogle Scholar
  18. 18.
    P. Taborek and A. Ferdman, to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • P. Taborek
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations