Raman Spin-Lattice Relaxation Induced by Optically Generated Zone-Boundary Phonons in Ruby

  • J. G. M. van Miltenburg
  • J. I. Dijkhuis
  • H. W. de Wijn
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 51)


This investigation is to show that at low temperatures zone-boundary phonons generated in the non-radiative decay following optical pumping of a paramagnetic center induce spin-lattice relaxation when the pumping is sufficiently intense to maintain an appreciable nonthermal phonon occupation. The system chosen is the optically excited Kramers doublet Ē(2E) of 130 ppm ruby at 1.5 K and a magnetic field of about 1 T applied along the trigonal crystal axis. Under these conditions the relaxation processes connecting the substates of Ē, viz., the direct relaxation, the Orbach relaxation via \( \overline {2A} \) , and Raman processes, are all slow compared to the radiative decay (τR = 3.8 ms) [1,2]. The Cr3+ ions are excited with stationary pumping into the \( {4_{{T_1}}} \) and \( {4_{{T_2}}} \) bands using an unfocused argon laser operating at all lines. The populations N+ and N of the upper and lower Ē level, respectively, are monitored through appropriate components of the Zeeman-split R1 luminescence. The spin-lattice relaxation time may then be extracted from the recovery of the populations following removal of microwave saturation (Fig.1). For an optically excited system another method to determine the relaxation is to measure the departure of the population ratio N/N+ from the value according to the spin memory in the optical feeding [3,4].


Radiative Decay Raman Process Maximum Laser Power Direct Relaxation Optical Feeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Geschwind, G.E. Devlin, R.L. Cohen, S.R. Chinn: Phys. Rev. 137, A 1087 (1965)Google Scholar
  2. 2.
    J.I. Dijkhuis, K. Huibregtse, H.W. de Wijn: Phys. Rev. B 20, 1835 (1979)CrossRefGoogle Scholar
  3. 3.
    H.W. de Wijn, R. Adde: Solid State Commun. 27, 1285 ( 1978 ]CrossRefADSGoogle Scholar
  4. 4.
    J.I. Dijkhuis, H.W. de Wijn: Phys. Rev. B 20, 3615 (1979)CrossRefGoogle Scholar
  5. 5.
    J.E. Rives, R.S. Meltzer: Phys. Rev. B 16, 808 (1977)CrossRefADSGoogle Scholar
  6. 6.
    H. Lengfellner, K.F. Renk: Phys. Rev. Lett. 46, 1210 (1981)CrossRefADSGoogle Scholar
  7. 7.
    P. Hu, V. Narayanamurti, M.A. Chin: Phys. Rev. Lett. 46, 192 (1981)CrossRefADSGoogle Scholar
  8. 8.
    W. Grill, O. Weis: Phys. Rev. Lett. 35, 588 (1975)CrossRefADSGoogle Scholar
  9. 9.
    H. Bialas, 0. Weis, H. Wendel: Phys. Lett. 43A, 97 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • J. G. M. van Miltenburg
    • 1
  • J. I. Dijkhuis
    • 1
  • H. W. de Wijn
    • 1
  1. 1.Fysisch LaboratoriumRijksuniversiteitUtrechtThe Netherlands

Personalised recommendations