Crossing Effects in Phonon Scattering

  • L. J. Challis
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 51)


Resonant scattering from a phonon current can occur at the transition frequencies v i associated with the electronic or motional energy levels of impurity ions or centres present in the crystal. If the concentration of centres is ‘small’ the scattering will only be significant within a narrow frequency bandwidth Δ [1] which may be much less (⋞ 1 GHz) than that of the phonon current (~ 2kT for a thermal current or ~ 40 GHz at 1K). Under these conditions the frequency spectrum of the phonon current has sharp holes burned in it as shown in fig. 1(a). In many cases these can be moved to and fro by applying an external perturbation such as a magnetic field. Sharp features in the total scattering occur when two of these holes cross (v i= v j) or in some cases anticross and these provide spectroscopic information which can be of quite high precision and resolution.


State Phys Phonon Scattering Diffuse Scattering Spectroscopic Information Phonon Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A is usually greater than the resonance linewidth and is defined by the frequencies at which the resonance scattering rate equals the boundary scattering rate.Google Scholar
  2. [2]
    A more detailed description of these will be given by the author in ‘Non-Equilibrium Phonons in Non-metallic crystals’. (North -Holland, Amsterdam) W.Eisenmenger and A.A. Kaplyanskii.Google Scholar
  3. [3]
    R.Berman, J.C.F. Brock and D.J. Huntley: Phys.Lett. 3, 310 (1963).Google Scholar
  4. [4]
    B.R. Anderson and L.J. Challis: J. Phys C: Sol. State Phys.$, 1475 (1975), L. J. Challis and M.N. Wybourne: J. Phys.0: Sol. State Phys.12, L711 (1979).Google Scholar
  5. [5]
    L.J. Challis and D.L. Williams: J Phys C: Sol. State Phys. 10, L621 (1977).CrossRefADSGoogle Scholar
  6. [6]
    L.J. Challis, A.A. Ghazi, D.J. Jefferies, D.L. Williams and M. N. Wybourne: Phys.Rev.Letts. 40, 519 (1978).CrossRefADSGoogle Scholar
  7. [7]
    A.P. Heraud, A.A. Ghazi and L.J. Challis (unpublished).Google Scholar
  8. [8]
    M.N. Wybourne, L.J. Challis and A.A. Ghazi: J. Phys.0: Sol.State Phys. 13, 6495 (1980).CrossRefGoogle Scholar
  9. [9] D. Walton: PT ys.Rev.151, 627 (1966)
    and Phys. Rev.Letts.19, 305 (1967); M.C. HTzer Jr. and D. Walton: Phys.Rev.B$, 4801 (1973).Google Scholar
  10. [10]
    A.A. Ghazi, L.J. Challis, D.L. Williams and J.R. Fletcher in ‘Phonon Scattering in Condensed Matter’ (Plenum, New York) ed.H.J. Maris p 113.Google Scholar
  11. [11]
    L.J. Challis, A.A. Ghazi and M.N. Wybourne: Phys. Rev.Letts.48, 759 (1982), and J.Phys.0: Sol.State Phys. 15, 77 (1982).ADSGoogle Scholar
  12. [12]
    This work is being carried out in collaboration with Dr M. N. Wybourne of the GEC Hirst Research Centre.Google Scholar
  13. [13]
    W. Hanle: Z. Phys. 30, 93 (1924).CrossRefADSGoogle Scholar
  14. [14]
    G. Breit: Rev.Mod.Píl—ys. 5, 91 (1933).CrossRefMATHADSGoogle Scholar
  15. [15]
    e.g. A. Corney Atomic and Laser Spectroscopy(Oxford University Press, Oxford 1977 ).Google Scholar
  16. [16]
    B.R. Anderson and L.J. Challis: J.Phys.0: Sol. State Phys. 8, 1495, (1975).CrossRefADSGoogle Scholar
  17. [17]
    B.R. Anderson and L.J. Challis: J.Phys.0: Sol. State Phys. 7, L440, (1974).CrossRefGoogle Scholar
  18. [18]
    J.L. Patel and J.K. Wigmore: J.Phys.0: Sol.State Phys. 10, 1829 (1977).CrossRefGoogle Scholar
  19. [19]
    M.N. Wybourne, (private communication).Google Scholar
  20. [20]
    S.V.J. Kenmuir, A.P. Heraud and L.J. Challis - to be published.Google Scholar
  21. [21]
    J.K. Wigmore: Phys. Letts. 37A, 293 (1971).CrossRefADSGoogle Scholar
  22. [22]
    K.Böhm, Diplomarbeit, Stutt6-dFt University, 1975 (unpublished).Google Scholar
  23. [23]
    H.J. Trumpp and W.Eisenmenger, Z. Phys. 28, 159 (1977).Google Scholar
  24. [24]
    P.Taborek and D.L. Goodstein: Sol.State—Comm. 38, 215 (1981).Google Scholar
  25. [25]
    R.O. Pohl and B.Strizker:Phys.Rev. B25, 3608 (1982).Google Scholar
  26. [26]
    D.Marx and W.Eisenmenger • Phys.Letis.93A, 152 (1983).Google Scholar
  27. [27]
    H.Schubert, P.Leiderer and H.Kinder: TLow Temp. Phys. 39, 363 (1980) and Phys.Rev. B26, 2317 (1982).Google Scholar
  28. [28]
    J.C. Hensel, R.C. Dynes and D.C. Tsui: J. de Physique, C6, 308, el981); Surf.Sci, 113, 249 (1982).CrossRefGoogle Scholar
  29. [29]
    V. Narayanamurti, H.L. Stormer, M.A. Chin, A.C. Gossard and W. Wiegmann: Phys. Rev.Letts. 43, 2012 (1979)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • L. J. Challis
    • 1
  1. 1.Department of PhysicsUniversity of NottinghamUniversity Park NottinghamEngland

Personalised recommendations