Skip to main content

Artificial Intelligence and Robotics

  • Conference paper
Robotics and Artificial Intelligence

Part of the book series: NATO ASI Series ((NATO ASI F,volume 11))

Abstract

Robotics is that field concerned with the connection of perception to action. Artificial Intelligence must have a central role in Robotics if the connection is to be intelligent. Artificial Intelligence addresses the crucial questions of: what knowledge is required in any aspect of thinking; how that knowledge should be represented; and how that knowledge should be used Robotics challenges AI by forcing it to deal with real objects in the real world. Techniques and representations developed for purely cognitive problems, often in toy domains, do not necessarily extend to meet the challenge.

Robots combine mechanical effectors, sensors, and computers. AI has made significant contributions to each component. We review AI contributions to perception and object oriented reasoning. Object-oriented reasoning includes reasoning about space, path-planning, uncertainty, fitting, and friction. We concluded with three examples that illustrate the kinds of reasoning or problem solving abilities we would like to endow robots with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agin, G. J, [1980], “Computer vision systems for industrial inspection and assembly,” Computer, 13, 11–20.

    Article  Google Scholar 

  • Ambler, A.P., and R.J. Popplestone, [1975], “Inferring the positions of bodies from specified spatial relationships,” Artificial Intelligence, 6, 2, 157–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Asada, H, [June, 1982], “A characteristics analysis of manipulator dynamics using principal transformations,” Proc. Amen Control Conf., Washington, D.C..

    Google Scholar 

  • Asada, H, [1983], Proc. International Symposium of Robotics Research.

    Google Scholar 

  • Asada, H. and T. Kanade, [Aug. 1981], “Design concept of direct-drive manipulators using rare-earth DC torque motors,” Proc. 7th Int. Joint. Conf. Artificial Intelligence, Vancouver, British Columbia, 775–778.

    Google Scholar 

  • Baker H. Harlyn, and Binford T. O, [1981], “Depth from edge and intensity based stereo,” Int. Jt. Conf. Artif. Intel., 6,.

    Google Scholar 

  • Binford T. O, [1981], “Inferring surfaces from images,” Artificial Intelligence, 17, 205–245.

    Article  Google Scholar 

  • Boissonat, J. -D, [1982], “Stable matching between a hand structure and an object silhouette,” IEEE Patt. Anal. and Mach. Intell., PAMI-4, 603–611.

    Article  Google Scholar 

  • Brady, Michael, [1982], Parts description and acquisition using vision, Robot vision Rosenfeld, A [ed]. Proc. SPIE, Washington D.C., 1–7.

    Google Scholar 

  • Brady, Michael, [1983a], “Parallelism in vision,” Artificial Intelligence, to appear.

    Google Scholar 

  • Brady, Michael, [1983b], Criteria for shape representations, Human and Machine vision, Beck J, and Rosenfeld A., eds., Academic Press.

    Google Scholar 

  • Brady, Michael, [1983c], Trajectory planning, Robot motion: planning and control, Brady, Michael, Hollerbach, J. M., Johnson, T. J., Lozano-Perez, T., and Mason, M. T., MIT Press,.

    Google Scholar 

  • Brady, Michael, [1983d], Representing shape, This volume.

    Google Scholar 

  • Brady, Michael, and Asada, Haruo, [1983], Smoothed local symmetries and their implementation, Proc. First Int. Symp. Robotics Research.

    Google Scholar 

  • Brady, Michael, and Yuille, Alan, [1983], An extremum principle for shape from contour, MIT, AI Lab., MIT-AIM 711.

    Google Scholar 

  • Brooks, R.A, [1981], “Symbolic Reasoning Among 3-D Models and 2D Images,” Artificial Intelligence, 17, 285–348.

    Article  Google Scholar 

  • Brooks, R. A, [1982], “Symbolic error analysis and robot planning,” Int. Journal of Robotics Research, 1 [4], 29–68.

    Article  Google Scholar 

  • Brooks, R. A, [1983a], “Solving the findpath problem by good representation of free space,” IEEE Trans. Sys. Man and Cyb., SMC-13, 190–197.

    MathSciNet  Google Scholar 

  • Brooks, R. A, [1983b], “Planning collision free motions for pick and place operations,” International Journal of Robotics Research, 2 [4],.

    Google Scholar 

  • Brooks, R. A., and Lozano-Pérez, Tomás, [1983], A subdivision algorithm in configuration space for findpath with rotation, Proc. Int. Jt. Conf. Artif. Intell. Karlsrühe.

    Google Scholar 

  • Bruss A., and Horn, B. K. P, [1981], Passive Navigation, MIT, AI Memo 662.

    Google Scholar 

  • Bundy, Alan, et. al, [1979], Solving mechanics problems using meta-level inference, Expert systems in the microelectronic age, Michie, D. [ed.], Edinburgh Univ. Press.

    Google Scholar 

  • Canny, J. F, [1983 Sept], Finding lines and edges in images, Proc. AAAI Conf., Washington, DC.

    Google Scholar 

  • Canny, J. F, [1983], Finding lines and edges in images, MIT.

    Google Scholar 

  • Clocksin, W. E., et al, [1982], Progress in visual feedback for arc-welding of thin sheet steel, Robot Vision, Pugh, Alan ed., IFS.

    Google Scholar 

  • Davis, Larry S. and Rosenfeld Azriel, [1981], “Cooperating processes for low-level vision: a survey,” Artificial Intelligence, 17, 245–265.

    Article  Google Scholar 

  • DeKleer, J, [1975], Qualitative and quantitative knowledge in classical mechanics, MIT Artificial Intelligence Laboratory, AI-TR-352.

    Google Scholar 

  • Faugeras, O. et. al, [1982], Towards a flexible vision system, Robot Vision, Pugh, Alan ed., IFS.

    Google Scholar 

  • Featherstone, R, [1983], “Position and velocity transformations between robot end effector coordinates and joint angles,” The International Journal of Robotics Research, 2[2],.

    Google Scholar 

  • Forbus, K. D, [1983], Qualitative process theory, MIT Artificial Intelligence Laboratory AIM-664A.

    Google Scholar 

  • Franklin, James W., and VanderBrug, G. J, [March, 1982], Programming vision and robotics system with RAIL, Robots VI Conf., Detroit, SME.

    Google Scholar 

  • Gaston, Peter C, and Lozano-Pérez, Tomás, [1983], Tactile recognition and localization using object models: the case of polyhedra on a plane, MIT Artificial Intelligence Lab. AIM-705.

    Google Scholar 

  • Goto, T., K. Takeyasu, and T. Inoyama, [1980], “Control algorithm for precision insert operation robots,” IEEE Trans. Systems, Man, Cybernetics, SMC-10, 1, 19–25.

    Google Scholar 

  • Grimson, W. E. L, [1981], From images to surfaces: a computational study of the human early visual system, MIT Press, Cambridge.

    Google Scholar 

  • Hackwood, S., and Beni, [1983], “Torque sensitive tactile array for robotics,” Int. Jour. Robotics Research, 2 [2],.

    Google Scholar 

  • Haralick, Robert M., Watson, Layne T., and Laffcy, Thomas J, [1983], “The topographic primal sketch,” The International Journal of Robotics Research, 2 [1], 50–72.

    Article  Google Scholar 

  • Harmon L, [1982], “Automated Tactile Sensing,” Int. Jour. Robotics Research, 1 [2], 3–33.

    Article  Google Scholar 

  • Hildreth, E, [1983], The measurement of visual motion, MIT. Artificial Intelligence Laboratory.

    Google Scholar 

  • Hillis, W. Daniel, [1982], “A high-resolution image touch sensor,” Int. Jour. Robotics Research, 1 [2], 33–44.

    Article  Google Scholar 

  • Hollerbach, J. M, [1983], Dynamics, Robot motion: planning and control, Brady, Michael, Hollerbach, J. M., Johnson, T. J., Lozano-Perez, T., and Mason, M. T., MIT Press,.

    Google Scholar 

  • Hollerbach, J. M., and Sahar, Gideon, [1983], Wrist partitioned inverse kinematic accelerations and manipulator dynamics, MIT Artificial Intelligence Laboratory, AIM-717.

    Google Scholar 

  • Horn B. K. P, [1982], Sequins and Quills — Representations for Surface Topography, Representation of 3-Dimensional Objects ed. Bajcsy R., Springer Verlag.

    Google Scholar 

  • Hopcroft, J. E., Schwartz, J. T., and Sharir M, [1983], “Efficient detection of intersections among spheres,” The International Journal of Robotics Research, 2 [4].

    Google Scholar 

  • Horn and Schunck, [1982], “Determining Optical Flow,” Artificial Intelligence, 17, 185–203.

    Article  Google Scholar 

  • Ikeuchi K, [1981], “Determination of surface orientations of specular surfaces by using the photometric stereo method,” IEEE [accepted for publication],,.

    Google Scholar 

  • Ikeuchi K. and Horn B. K. P, [1981], “Numerical shape from shading and occluding boundaries,” Artificial Intelligence, 17, 141–185.

    Article  Google Scholar 

  • Ikeuchi, K., and Horn, B. K. P, [1983],, Proc. First Int. Symp. Robotics Research.

    Google Scholar 

  • Lieberman, L.I., and M.A. Wesley, [1977], “AUTOPASS: an automatic programming system for computer controlled mechanical assembly,” IBM J. Research Development, 21, 4, 321–333.

    Article  Google Scholar 

  • Lowe, D. G., and Binford, T. O, [1982], Segmentation and aggregation: an approach to figure-ground phenomena, Proc. Image Understanding Workshop, Baumann Lee S. [ed.], Sci. App. Inc. Tysons Corner Va., 168–178.

    Google Scholar 

  • Lozano-Perez, T, [1976], The design of a mechanical assembly system, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, AI TR 397.

    Google Scholar 

  • Lozano-Pérez, Tomás I, [1981], “Automatic planning of manipulator transfer movements,” IEEE Trans. Sys., Man and Cyb., SMC-11, 681–698.

    Article  Google Scholar 

  • Lozano-Pérez, Tomás I, [1983a], “Spatial planning: a configuration space approach,” IEEE Trans. Comp., C-32, 108–120.

    Article  Google Scholar 

  • Lozano-Pérez, Tomás, [1983b], Robot programming, MIT Artificial Intelligence Laboratory, AIM-698.

    Google Scholar 

  • Lozano-Pérez, Tomás, Mason, Matthew T., and Taylor, R. H, [1983c], Automatic Synthesis of fine-motion strategies for robots, Proc. International Symposium of Robotics Research.

    Google Scholar 

  • Lozano-Pérez, Tomás, [1983d], Spatial Reasoning, Robot motion: planning and control, Brady, Michael, Hollerbach, J. M., Johnson, T. J., Lozano-Perez, T., and Mason, M. T., MIT Press,

    Google Scholar 

  • Lozano-Perez, T. L., and Crimson, W. E. L, [1983], Local constraints in tactile recognition, MIT Artificial Intelligence Laboratory.

    Google Scholar 

  • Lozano-Perez, T. L., Mason, T. M., and Taylor, R. H, [1983],, Proc. First Int. Symp. Robotics Research.

    Google Scholar 

  • Marr, D, [1982], Vision, Freeman, San Francisco.

    Google Scholar 

  • Marr, D. and Hildreth, E.C, [1980], “Theory of Edge Detection,” Proc. R. Soc. Lond. B, 270, 187–217.

    Article  Google Scholar 

  • Marr D. and Poggio T, [1979], “A theory of human stereo vision,” Proc. R. Soc. Lond. B, 204, 301–328.

    Article  Google Scholar 

  • Mason, T. M, [reprinted in Robot motion: planning and control Brady, Michael, Hollerbach, J. M., Johnson, T. J., Lozano-Perez, T., and Mason, M. T., MIT Press] [1981], “Compliance and force control for computer controlled manipulators,” IEEE Trans. Sys. Man and Cyb., SMC-11, 418–432.

    Article  Google Scholar 

  • Mason, T. M, [1983], Compliance, Robot motion: planning and control, Brady, Michael, Hollerbach, J. M., Johnson, T. J., Lozano-Perez, T., and Mason, M. T., MIT Press,.

    Google Scholar 

  • Paul, R.P, [1981], Robot Manipulators: Mathematics, Programming, and Control, MIT Press, Cambridge, Mass..

    Google Scholar 

  • Pieper, D.L, [1968], The Kinematics of Manipulators under Computer Control, Ph.D. thesis, department of Computer Science, Stanford University.

    Google Scholar 

  • Pieper, D.L., and B. Roth, [September 1969], “The kinematics of manipulators under computer control,” Proc. 2nd Int. Conf. Theory of Machines and Mechanisms, Warsaw.

    Google Scholar 

  • Popplestone, R. J., Ambler, A. P., and Bellos, I. M, [1980], “An interpreter for a language for describing assemblies,” Artificial Intelligence, 14, 79–107.

    Article  Google Scholar 

  • Porter, G., and Mundy, J, [1982], “A non-contact profile sensor system for visual inspections,” IEEE Workshop on Ind. Appl. of Mach. Vis.,,.

    Google Scholar 

  • Raibert, M. H., and Craig, J. J, [1983], A hybrid force and position controller, Robot motion: planning and control, Brady, Michael, Hollerbach, J. M., Johnson, T. J., Lozano-Perez, T., and Mason, M. T., MIT Press,.

    Google Scholar 

  • Raibert, Marc H., and Tanner, John E, [1982], “Design and implementation of a VLSI tactile sensing computer,” Int. Jour. Robotics Research, 1 [3], 3–18.

    Article  Google Scholar 

  • Requicha, A. A. G, [December, 1980], “Representation of Rigid Solids: Theory, Methods, and Systems,” Computing Surveys, 12, 4, 437–464.

    Article  Google Scholar 

  • Rich, C. R., and Waters, R, [1981], Abstraction, inspection, and debugging in programming, MIT Artificial Intelligence Laboratory, AIM-634.

    Google Scholar 

  • Sacerdoti, E, [1975], A structure for plans and behavior, SRI Artificial Intelligence Center TR-109.

    Google Scholar 

  • Salisbury, J.K, [1982], Kinematic and Force Analysis of Articulated Hands, Ph.D. thesis, department of Mechanical Engineering, Stanford University.

    Google Scholar 

  • Salisbury, J.K., and J.J. Craig, [1982], “Articulated hands: force control and kinematic issues,” Int. J. Robotics Research, 1, 1, 4–17.

    Article  Google Scholar 

  • Schunck, B. G, [1983], Motion segmentation and estimation, MIT Artificial Intelligence Laboratory.

    Google Scholar 

  • Schwartz, Jacob T., and Sharir, Micha, [1983], “The piano movers problem III,” The International Journal of Robotics Research, 2 [3].

    Google Scholar 

  • Taylor, R.H, [July, 1976], The synthesis of manipulator control programs from task-level specifications, Artificial Intelligence Laboratory, Stanford University, AIM-282.

    Google Scholar 

  • Taylor, R. H., Summers, P. D., and Meyer J. M, [1982], “AML: a manufacturing language,” The International Journal of Robotics Research, 1[3], 19–41.

    Article  Google Scholar 

  • Terzopoulos, D, [1983], “Multi-level reconstruction of visual surfaces,” Computer Graphics and Image Processing.

    Google Scholar 

  • VAL, [1980], User’s guide: a robot programming and control system, CONDEC Unimation Robotics.

    Google Scholar 

  • Villers, Philippe, [1982], Present industrial use of vision sensors for robot guidance, Robot Vision, Pugh, Alan ed., IFS.

    Google Scholar 

  • Vilnrotter F., Nevatia R., and Price K. E, [1981], Structural analysis of natural textures, Proc. Image Understanding Workshop ed. Lee Baumann S., 61–68.

    Google Scholar 

  • Wesley, M. A. et al, [January, 1980], “A Geometric Modeling System for Automated Mechanical Assembly,” IBM J. Research and Development, 24, 1, 64–74.

    Article  MathSciNet  Google Scholar 

  • Whitney, D. E, [1983], The mathematics of compliance, Robot motion: planning and control, Brady, Michael, Hollerbach, J. M., Johnson, T. J., Lozano-Perez, T., and Mason, M. T., MIT Press,

    Google Scholar 

  • Winston, Patrick H, [1983], Artificial Intelligence, Second Edition, Addison Wesley, Reading: Mass..

    Google Scholar 

  • Winston, Patrick H., Binford, Thomas O., Katz, Boris, and Lowry, Michael, [1983], Learning physical descriptions from functional descriptions, examples, and precedents, MIT Artificial Intelligence Laboratory, AIM-679.

    Google Scholar 

  • Witkin, Andrew P, [1981], “Recovering surface shape and orientation from texture,” Artificial Intelligence, 17, 17–47.

    Article  Google Scholar 

  • Zucker S. W., Hummel R. A., and Rosenfeld Azriel, [1977], “An application of relaxation labelling to line and curve enhancement,” IEEE Trans. Computers, C-26, 394–403, 922–929.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brady, M. (1984). Artificial Intelligence and Robotics. In: Brady, M., Gerhardt, L.A., Davidson, H.F. (eds) Robotics and Artificial Intelligence. NATO ASI Series, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82153-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82153-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82155-4

  • Online ISBN: 978-3-642-82153-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics