Object Representation, Identification and Positioning from Range Data

  • O. D. Faugeras
  • M. Hebert
  • E. Pauchon
  • J. Ponce
Part of the NATO ASI Series book series (volume 11)


We review the types of representations (both single level and hierarchical) and the matching algorithms which have been found useful in the design and implementation of a 3-D vision system that can model, identify, and position industrial parts.


Rigid Motion Adjacency Graph Hierarchical Representation Automobile Part Polygonal Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Faugeras, O.D. and al. “Towards a Flexible Vision System”, in Robot Vision, A. Pugh Editor, IFS (Publications) Ltd, U.K., Springer Verlag 1983.Google Scholar
  2. 2.
    Boissonnat, J.D. and Germain, F. “A new approach to the problem of acquiring randomly oriented workpieces out of a bin”, Proc. IJCAI 1981, Vancouver.Google Scholar
  3. 3.
    O’Rourke, O. “Triangulation of minimal area as 3-D object models”, Proc. IJCAI 81, Vancouver, pp.664–666.Google Scholar
  4. 4.
    Boissonnat, J.D. “Representation of objects by triangulation points in 3-D spaces”, Proc. ICPR 82, Munich, pp.830–832.Google Scholar
  5. 5.
    Boissonnat, J.D. “La triangulation de Delaunay et la représentation des formes bi et tridimensionnelles”, Congrès AFCET, Reconnaissance des Formes et Intelligence Artificielle, Paris 1984.Google Scholar
  6. 6.
    Faugeras, O.D. and Pauchon, E. “Measuring the shape of 3-D objects”, Proc. CVPR 83, Arlington, U.S.A., 1983, pp. 2–7.Google Scholar
  7. 7.
    Keppel, E. “Approximating Complex surfaces by triangulation of contour lines”, IBM J. Res. Dev. 19 (Jan. 1975), pp.2–11.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Nevatia, R. and Binford, T.O. “Description and Recognition of Curved Objects”, Artificial Intelligence, Vol.8, pp.77–98, 1977.MATHCrossRefGoogle Scholar
  9. 9.
    Pavlidis, T. “Waveform Segmentation through Functional Approximation”, IEEE Trans. Comp., Vol.C22, pp.689–697, July 1973.CrossRefGoogle Scholar
  10. 10.
    Faugeras, O.D. and Hebert, M. and Pauchon, E. “Segmentation of range data into planar and quadratic patches”, Proc. CVPR 83, Arlington, U.S.A., 1983, pp. 8–13.Google Scholar
  11. 11.
    Hunter, G.M. and Steiglitz, K. “Operations on Images using Quad Trees”, IEEE Trans. Patt. Anal, and Mach. Int., PAMI-1, N° 2, pp. 145–153, 1979.Google Scholar
  12. 12.
    Samet, H. “Neighbor finding Techniques for Images Represented by Quad Trees”, Comp. Gr. and Im. Proc., Vol.18, pp.37–52, 1982.MATHCrossRefGoogle Scholar
  13. 13.
    Faugeras, O.D., Hebert, M., Mussi, P. and Boissonnat, J.D. “Polyhedral Approximation of 3-D Objects without Holes”, Comp. Gr. and Im. Proc., in Press.Google Scholar
  14. 14.
    Ballard, D.H. “Strip Trees: A Hierarchical Representation for Curves”, C.A.C.M., Vol.24, N° 5, 1981.Google Scholar
  15. 15.
    Faugeras, O.D. and Ponce, J. “Prism Trees: A Hierarchical Represention for 3-D Objects”, Proc. of IJCAI, 1983.Google Scholar
  16. 16.
    Arzty, E., Frieder, G., Hermann, G.T. “The Theory, Design, Implementation, and Evaluation of a 3-D Surface Detection Algorithm”, Computer Gr. 12, pp.153–160, 1978.CrossRefGoogle Scholar
  17. 17.
    Rosenfeld, A. “Three-Dimensional Digital Topology”, Information and Control 50, pp.119–127, 1981.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Serra, J. “Image Analysis and Mathematical Morphology”, Academic Press, 1982.MATHGoogle Scholar
  19. 19.
    Meyer, F. “Cytologie Quantitative et Morphologie Mathématique”, Thèse de Docteur Ingénieur, Ecole des Mines de Paris, 1979.Google Scholar
  20. 20.
    Hermann, G.T. “Image Reconstruction from Projections, The Fundamentals of Computerized Tomography”, New York Academic Press, 1980.Google Scholar
  21. 21.
    Faugeras, O.D. and Hebert, M. “A 3-D Recognition and Positioning Algorithm using Geometrical Matching between Primitive Surfaces”, IJCAI 1983, August 1983, Karlsruhe.Google Scholar
  22. 22.
    Jacobson, N. “Lectures in Abstract Algebra”, Van Nostrand Ed., 1951.Google Scholar
  23. 23.
    Steward, G.W. “Introduction to Matrix Computations”, Academic Press, 1973.Google Scholar
  24. 24.
    Shapiro, L.G. and Haralick, R. “Structural Descriptions and Inexact Matching”, IEEE Trans, on Pattern Analysis and Machine Intelligence, Vol.3, N° 3, Sept.81, pp.504–519.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • O. D. Faugeras
    • 1
  • M. Hebert
    • 1
  • E. Pauchon
    • 1
  • J. Ponce
    • 1
  1. 1.INRIA Domaine de Voluceau-RocquencourtLe Chesnay CédexFrance

Personalised recommendations