Advertisement

An Interpolation Method on Triangular Networks for Surface Model Architectures

  • Walter Kropatsch
Conference paper
Part of the NATO ASI Series book series (volume 18)

Abstract

In many application fields, such as geodesy, cartography, and surveying large surfaces are represented by triangular networks (3, 11, 12, 17). These networks must be manipulated and modified frequently as they are generated. Afterwards, the graphical presentation of these surfaces should be pleasing to the eye of a critical observer.

Keywords

Control Point Primitive Element Bezier Curve Interpolation Model Topological Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bezier (1972): Numerical Control. Mathematics and Applications, John Wiley Sons, London 1972.MATHGoogle Scholar
  2. 2.
    W. Boehm (1975): “Zur Approximation von raeumlichen Flaechen mittels geeigneter Netze”. Angewandte Informatik, 3 /75, pp. 99–103.MathSciNetGoogle Scholar
  3. 3.
    K. Brassel (1975): “Neighborhood Computations for large Sets of Data Points”, in AUTO–CARTO II, proc. intl. symp. on computer–assisted cartography. September 21–25, 1975.Google Scholar
  4. 4.
    E. Clerici, K. Kubik (1973): “The Theoretical Accuracy of Point Interpolation on Topographic Surfaces”. Dienst Informatieverwerking, Dec. 1973.Google Scholar
  5. 5.
    St. A. Coons (1976): “Surfaces for Computer-Aided Design of Space Forms”. Technical report MAC-TR-41,M.I.T.,Cambridge,Mass., June 1976.Google Scholar
  6. 6.
    J. Ferguson (1964): “Multivariable Curve Interpolation”. JACM, April 1964.Google Scholar
  7. 7.
    W. K. Giloi (1978): Interactive Computer Graphics. Prentice-Hall, pp. 134–140.Google Scholar
  8. 8.
    S. Glaenzer (1977): Ein Beitrag zur Darstellung glatter Flaechen. Dissertation, TU-Graz, Nov. 1977.Google Scholar
  9. 9.
    The Graz-Terrain-Model“,User Guide (1983). Programmdokumentation am Institut für digitale Bildverarbeitung und Grafik.Google Scholar
  10. 10.
    K. Kraus (1972): “Interpolation nach kleinsten Quadraten in der Photogrammetrie”. Bildmessung und Luftbildwesen, 1 /1972, pp. 7–11.Google Scholar
  11. 11.
    G. L. Lawson (1972): “Generation of a Triangular Grid with Application to Contour Plotting”. Sect. 914, Techn. Mem. No. 299, Febr. 1972, JPL.Google Scholar
  12. 12.
    A. Mirante, N. Weingarten (1982): “The Radical Sweep Algorithm for Constructing Triangulated Irregular Networks”. IEEE, Tr. on Computer Graphics and Appl., May 1982, pp. 11–21.Google Scholar
  13. 13.
    W. F. Newman, R. F. Sproull (1979): Principles of Interactive Computer Graphics. New York: McGrawHill; pp. 315–320.Google Scholar
  14. 14.
    T. Pavlidis (1982): Graphics and Image Processing. Springer Verlag Berlin-Heidelberg-New York.Google Scholar
  15. 15.
    H. Spaeth (1973): Spline-Algorithmen zur Konstruktion glatter Kurven und Flaechen. R. Oldenburg Verlag, Muenchen 1973.Google Scholar
  16. 16.
    E. Stark, E. Mikhail (1973): “Least Squares and Non-Linear Functions”. Photogrammetric Engeneering, 1973.Google Scholar
  17. 17.
    G. Zumofen, M. Leoni (1977): Neue Programmsysteme zur Berechnung und Darstellung von Isolinien mit Hilfe von Kleincomputern. Zeitschrift Vermessung, Photogrammetrie, Kulturtechnik 6–77.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Walter Kropatsch
    • 1
  1. 1.Institute for Image Processing and Computer GraphicsTechnical University and Research CenterGrazAustria

Personalised recommendations