Theoretical Methods for the Analysis of Exciton Capture and Annihilation

  • V. M. Kenkre
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 49)


The theoretical activity in the field of exciton dynamics in molecular crystals may be considered as being divided into three parts: (i) the search for an appropriate evolution equation or transport instrument to serve as a point of departure for the analysis of exciton motion, (ii) the construction of a practical formalism or scheme to take one from the point of departure to observable quantities, and (iii) the application of the consequences of the scheme to particular experimental results. Such a division is not only analogous to similar logical classifications in entire branches of physics, e.g., in statistical mechanics itself, but, in the case of Frenkel exciton dynamics, it is also, in large part, chronological. In 1932 PERRIN found definite disagreement with experiments — on fluorescence depolarization — on choosing the Schrödinger equation among sharp molecular site states as the transport instrument [1]. In 1948 FÖRSTER showed that the disagreement stemmed not from the particular transport mechanism assumed by PERRIN — dipole-dipole interactions — but from the transport instrument itself [2].


Schrodinger Equation Decay Stage Energy Transfer Rate Coherence Effect Practical Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Perrin, Ann.Physique V7, 283 (1932)Google Scholar
  2. 3.
    Th. Förster, in Comparative Effects of Radiation, J.S. Kirby- Smith, J.L. Magee ed. (Wiley, New York 1960 ) Chap. 13Google Scholar
  3. 4.
    H. Haken and G. Strobl, Z.Phys. 264, 135 (1973); H. Haken and P. Reineker, Z.Phys. 249, 253 (1972)CrossRefADSGoogle Scholar
  4. 5.
    P. Reineker, in Exciton Dynamics in Molecular Crystals and Aggregates, G. Höhler ed. ( Springer-Verlag, Berlin, 1982 )Google Scholar
  5. 6.
    M. Grover and R. Silbey, J.Chem.Phys. 54, 4843 (1971)CrossRefADSGoogle Scholar
  6. 7.
    R. Silbey, Ann. Rev. Phys. Chem. 21, 203 (1976)ADSGoogle Scholar
  7. 8.
    V.M. Kenkre and R.S. Knox, Phys.Rev. B9, 5279 (1974); Phys.Rev.Lett. 33, 803 (1974)CrossRefADSGoogle Scholar
  8. 9.
    V.M. Kenkre, in Statistical Mechanics and Statistical Methods in Theory and Application, U. Landman ed. ( Plenum, New York, 1977 )Google Scholar
  9. 10.
    V.M. Kenkre, Phys.Rev. BJJ, 1741 (1975); 12, 2150 (1975) ? Phys.Lett. 63A, 367 (1977); 65A, 391 (1978)Google Scholar
  10. 11.
    V.M. Kenkre, in Exciton Dynamics in Molecular Crystals and Aggregates, G. Höhler ed. ( Springer-Verlag, Berlin, 1982 )Google Scholar
  11. 12.
    V.M. Kenkre, J.Stat.Phys. 30, 293 (1983); Proceedings of the Fourth International Seminar on Energy Transfer, J. Panto- flicek ed. (Prague, 1981 ) p. 54Google Scholar
  12. 13.
    H.C. Wolf, in Adv. in Atomic and Molecular Physics vol. 34 D.R. Bates and I. Esterman ed. ( Acad. New York 1967 )Google Scholar
  13. 14.
    V.M. Kenkre and Y.M. Wong, Phys.Rev. 23, 3748 (1981)CrossRefADSGoogle Scholar
  14. 15.
    V.M. Kenkre and P.E. Parris, Phys.Rev. B6, 3221 (1983)Google Scholar
  15. 16.
    V.M. Kenkre, Chem. Phys. Lett. 93, 260 (1982)CrossRefADSGoogle Scholar
  16. 17.
    V.M. Kenkre, P.E. Parris and S.M. Phatak, University of Rochester preprintGoogle Scholar
  17. 18.
    W. Klopfer, H. Bauser, F. Dolezalek and Gr. Naundorf, Mol. Cryst. Liq. Cry st. 16, 229 (1972)CrossRefGoogle Scholar
  18. 19.
    H. Port, H. Schneckenburger and H.C. Wolf, Z.Naturforsch. 36, 697 (1981)ADSGoogle Scholar
  19. 20.
    V.M. Kenkre, Phys.Rev. 22, 2089 (1980)CrossRefADSGoogle Scholar
  20. 21.
    P. Avakian, V. Ern, R.E. Merrifield and A. Suna, Phys.Rev. 165, 974 (1968)CrossRefADSGoogle Scholar
  21. 22.
    V.M. Kenkre, A. Fort and V. Ern, Chem.Phys.Lett. 96, 658 (1983)CrossRefADSGoogle Scholar
  22. 23.
    V.M. Kenkre and D. Schmid, Chem. Phys. Lett. 94, 603 (1983)CrossRefADSGoogle Scholar
  23. 24.
    A. Braun, U. Mayer, H. Auweter, H.C. Wolf and D. Schmid, Z.Naturforsch. 37, 1013 (1982)ADSGoogle Scholar
  24. 25.
    V. Ern, P. Avakian and R.E. Merrifield, Phys.Rev. 148, 862 (1966)CrossRefADSGoogle Scholar
  25. 26.
    J. Salcedo, A.E. Siegman, D.D. Dlott and M.D. Fayer, Phys. Rev. Lett. 61, 131 (1978)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • V. M. Kenkre
    • 1
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA

Personalised recommendations