Transport and Thermodynamics of Physical Systems with Fractal Geometry

  • R. Orbach
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 49)


An analysis of the physical properties of fractals is given. Three dimensionalities are required: d — Euclidean (embedding); đ — Hausdorff; and đ — spectral (fracton). These three are sufficient to specify the transport and thermodynamic properties of self-similar systems. Application is made to relaxation time measurements on polypeptides; thermodynamic and transport studies of glasses, polymers, and irradiated quartz; and computer simulations of percolating networks.


Fractal Geometry Amorphous System Relaxation Time Measurement Short Length Scale Finite Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.B. Mandelbrot, “The Fractal Geometry of Nature” (Freemann, San Francisco, 1982 ), and “Fractals: Form, Chance and Dimension” ( Freeman, San Francisco, 1977 ).Google Scholar
  2. 2.
    D. Ben-Avraham and S. Havlin, J. Phys. A: Math. Gen. 15, 691 (1982)CrossRefGoogle Scholar
  3. 3.
    H.J. Stapleton, J.P. Allen, C.P. Flynn, D.G. Stinson, and S.R. Kurtz, Phys. Rev. Lett. 45, 1456 (1980)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    S. Alexander, C. Laermans, R. Orbach, and H.M. Rosenberg, submitted for publication to the Physical Review, 1983.Google Scholar
  5. 5.
    P.G. de Gennes, J. Physique-Letters 37, l (1976)Google Scholar
  6. 6.
    R. Rammal and G. Toulouse, J. Physique-Letters 44, 13 (1983).CrossRefGoogle Scholar
  7. 7.
    S. Alexander and R. Orbach, J. Physique-Letters 43, 625 (1982).CrossRefGoogle Scholar
  8. 8.
    D. Stauffer, Phys. Rep. 54, 1 (1979).CrossRefADSGoogle Scholar
  9. 9.
    M.P.M. den Nijs, J. Phys. A: Math. Gen. 12, 1857 (1979).CrossRefADSGoogle Scholar
  10. 10.
    B. Derrida and J. Vannimenus, J. Phys. A: Math. Gen. 15, 557 (1982).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    S. Kelham and H.M. Rosenberg, J. Phys. C: Sol. St. Phys. 14, 1737 (1981).CrossRefADSGoogle Scholar
  12. 12.
    M.P. Zaitlin and A.C. Anderson, Phys. Rev. B 12, 4475 (1975)CrossRefADSGoogle Scholar
  13. 13.
    E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).CrossRefADSGoogle Scholar
  14. 14.
    Very recent Mossbauer measurements of P. Boolchand on Sn sites in GeS2 glass (private communication) exhibit a temperature dependence different from that expected for a simple Einstein plus Debye vibrational spectrum. It is possible that an N(oo) similar in form to Eq. 8 may provide a more satisfactory fit.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • R. Orbach
    • 1
  1. 1.Physics DepartmentUniversity of CaliforniaLos AngelesUSA

Personalised recommendations