Introduction to Renormalisation Group Methods

  • R. B. Stinchcombe
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 48)

Abstract

The renormalisation group approach of WILSON, FISHER and KADANOFF [1,2,3] was developed to treat critical behaviour near continuous phase transitions. At such transitions, the correlations become of infinite range and the divergence of the correlation length introduces singularities in thermodynamic and other properties.These critical singularities are characterised by critical exponents α,β,…,defined as follows [4,5] for a simple magnet:
$${\matrix{{({\rm{i}})\quad \underline {{\rm{h}} = 0,} \;{{\underline {{\rm{T}} \sim {\rm{T}}} }_{\rm{C}}}:} & {{\rm{C}} \propto \left| {{\rm{T}} - {{\rm{T}}_{\rm{C}}}} \right|} \cr} ^{ - \alpha }}$$
(1)
$${\matrix{{} & {{\rm{M}} \propto ({{\rm{T}}_{\rm{C}}} - {\rm{T}})} \cr} ^\beta }\quad ({\rm{T}} < {{\rm{T}}_{\rm{C}}})$$
(2)
$${\matrix{{} & {\chi \, \propto \left| {{\rm{T}} - {{\rm{T}}_{\rm{C}}}} \right|} \cr} ^{ - \gamma }}$$
(3)
$$\begin{array}{*{20}{c}} {{{{\begin{array}{*{20}{c}} {({\text{ii}})} & {\underline {T = T} } \\ \end{array} }}_{c}},\underline {h \sim 0:} } & {M \propto |h| \frac{1}{\delta } } \\ \end{array}$$
(4)
$$\begin{array}{*{20}{c}} {({\text{iii)}} h = 0,} & {T \sim {{T}_{c}},r \to \infty :{{\Gamma }_{r}} \equiv \langle {{S}_{o}}{{S}_{r}}\rangle - \langle {{S}_{o}}\rangle \langle {{S}_{r}}\rangle } \\ \end{array} \sim \frac{{\exp ( - r/\xi )}}{{{{r}^{{d - 2 + \eta }}}}}$$
(5)
$$\matrix{{} & {\xi \; \propto {{\left| {{\rm{T}} - {{\rm{T}}_{\rm{C}}}} \right|}^{ - \nu }}} \cr}.$$
(6)
Here, C, M, χ, Γr, ξ are respectively specific heat, magnetisation, susceptibility, correlation function for spins S separated by distance r, and correlation length; h is a reduced magnetic field; T is temperature and Tc its critical value. These functions are not independent since, for example [4]
$$\chi = {\textstyle{{\partial {\rm{M}}} \over {\partial {\rm{h}}}}} = \mathop \Sigma \limits_{\rm{r}} \;{\Gamma _{\rm{r}}}.$$
(7)

Keywords

Nickel Anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.G. Wilson: Phys. Rev. Lett. 28, 584 (1972)Google Scholar
  2. 2.
    K.G. Wilson and M.E. Fisher: Phys. Rev. Lett. 28 240 (1972)CrossRefADSGoogle Scholar
  3. 3.
    L.P. Kadanoff : Physics 2, 263 (1966)Google Scholar
  4. 4.
    M.E. Fisher: Reports on Progress in Physics 30, 615 (1967)CrossRefADSGoogle Scholar
  5. 5.
    H.E. Stanley: “Introduction to Phase Transitions and Critical Phenomena” (Oxford, 2nd Edn) (1983)Google Scholar
  6. 6.
    L. Onsager: Phys. Rev. 65, 117 (1944)CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    L.D. Landau and E.M. Lifshitz: “Statistical Physics” (Pergamon) 1959)Google Scholar
  8. 8.
    R. Brout: “Phase Transitions” (Benjamin) (1965)Google Scholar
  9. 9.
    A.P. Young: J. Phys. C8, L309 (1976)Google Scholar
  10. 10.
    A.D. Bruce: “Theory of Structural Phase Transitions: Universality …” in “Nonlinear Phenomena at Phase Transitions and Instabilities”, ed. T. Riste (Plenum) (1982)Google Scholar
  11. 11.
    P.C. Hohenberg and B.I. Halperin: Rev. Mod. Phys. 49, 435 (1977)CrossRefADSGoogle Scholar
  12. 12.
    B. Widom: J. Chem. Phys. 43, 3892, 3898 (1965)CrossRefADSGoogle Scholar
  13. 13.
    R.B. Griffiths: J. Chem. Phys. 43, 1958 (1965)CrossRefADSGoogle Scholar
  14. 14.
    K.G. Wilson and J. Kogut : Phys. Rep. 12C, 75 (1974)CrossRefADSGoogle Scholar
  15. 15.
    S-K Ma: “Modern Theory of Critical Phenomena” (Benjamin) (1976)Google Scholar
  16. 16.
    A.P. Young and R.B. Stinchcombe: J. Phys. C8, L535 (1975); C9, L643ADSGoogle Scholar
  17. 17.
    J.W. Essam: Rept. Prog. Phys. 43, 833 (1980)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    A. Coniglio: Lectures notes in this volumeGoogle Scholar
  19. 19.
    L.P. Kadanoff and A. Houghton: Phys. Rev. B11, 377 (1975)ADSGoogle Scholar
  20. 20.
    M.N. Barber: J. Phys. C8, L203 (1975)ADSGoogle Scholar
  21. 21.
    D.J. Wallace and R.K.P. Zia: Rept. Prog. Phys. 41, 1 (1978)CrossRefADSGoogle Scholar
  22. 22.
    D.J. Amit: “Field Theory, the Renormalisation Group and Critical Phenomena” (McGraw Hill) (1978)Google Scholar
  23. 23.
    G. t’Hooft: Nucl. Phys. B61, 455 (1973)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Th. Niemeyer and J.M.J. Van Leeuwen: Phys. Rev. Lett. 31, 1411 (1973)CrossRefADSGoogle Scholar
  25. 25.
    Th. Niemeyer and J.M.J. Van Leeuwen: in “Phase Transitions and Critical Phenomena” ed. C. Domb and M.S. Green (Academic Press) Vol. 6 (1976)Google Scholar
  26. 26.
    M.N. Barber: “Finite Size Scaling” to be published in “Phase Transitions and Critical Phenomena” ed. C. Domb and J.L. Lebowitz (Academic Press) Vol. 8 (1983)Google Scholar
  27. 27.
    S-K Ma: Rev. Mod. Phys. 45, 489 (1973)CrossRefADSGoogle Scholar
  28. 28.
    E. Brézin and J. Zinn-Justin: Phys. Rev. B14, 3110 (1976)ADSGoogle Scholar
  29. 29.
    G. Parisi: J. Stat. Phys. 23, 49 (1980)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    T.W. Burkhardt and J.M.J. Van Leeuwen: “Real Space Renormalisation” (Springer-Topics in Current physics, Vol.30) (1982)Google Scholar
  31. 31.
    T.T. Wu: Phys. Rev. 149, 380 (1966)CrossRefADSGoogle Scholar
  32. 32.
    L. Sneddon and M.N. Barber: J. Phys. C10, 2653 (1977)ADSGoogle Scholar
  33. 33.
    R.B. Stinchcombe: “Dilute Magnetism” in “Phase Transitions and Critical Phenomena” ed. C. Domb and J.L. Lebowitz (Academic Press) Vol. 7 (1983)Google Scholar
  34. 34.
    A.A. Migdal: Sov. Phys. JETP 42, 743 (1976)ADSGoogle Scholar
  35. 35.
    L.P. Kadanoff: Ann. Phys. (NY) 100, 559 (1976)CrossRefGoogle Scholar
  36. 36.
    M. Suzuki and H. Takano: Phys. Lett. 69A, 426 (1979)ADSMathSciNetGoogle Scholar
  37. 37.
    R.B. Stinchcombe: J. Phys. C12, L389 (1979)ADSMathSciNetGoogle Scholar
  38. 38.
    R.B. Stinchcombe: J. Phys. C12, 2625 (1979)ADSMathSciNetGoogle Scholar
  39. 39.
    T.W. Burkhardt: “Bond Moving and Variational Methods in Real Space Renormalisation”, in reference [30]Google Scholar
  40. 40.
    R.H. Swendsen: J. Appl. Phys. 53, 1920 (1982)CrossRefADSGoogle Scholar
  41. 41.
    M.C. Yalabik and J.D. Gunton: Phys. Rev. B25, 534 (1982)ADSGoogle Scholar
  42. 42.
    M.P. Nightingale: Physica 83A, 561 (1976)ADSGoogle Scholar
  43. 43.
    R.R. dos Santos and L. Sneddon: Phys. Rev. B23, 3541 (1981)ADSGoogle Scholar
  44. 44.
    M.P. Nightingale:: J. Appl. Phys. 53 7927 (1982)CrossRefADSGoogle Scholar
  45. 45.
    B. Derrida and J. Vannimenus: J. Physique 41, L473 (1980)CrossRefMathSciNetGoogle Scholar
  46. 46.
    L. Sneddon: J. Phys. C12, 3051 (1979)ADSMathSciNetGoogle Scholar
  47. 47.
    L. Sneddon and R.B. Stinchcombe: J. Phys. C12, 3761 (1979)ADSMathSciNetGoogle Scholar
  48. 48.
    H.W.J. Blöte, M.P. Nightingale and B. Derrida: J. Phys. A14, L45 (1981)ADSGoogle Scholar
  49. 49.
    J.L. Pichard and G. Sarma: J. Phys. C14, L127 (1981)ADSGoogle Scholar
  50. 50.
    R. Brout: Phys. Rep. 10C, 1 (1974)CrossRefADSGoogle Scholar
  51. 51.
    R.G. Priest and T.C. Lubensky: Phys. Rev. B13, 4159 (1976)ADSGoogle Scholar
  52. 52.
    S-K Ma: Rev. Mod. Phys. 45, 589 (1973)CrossRefADSGoogle Scholar
  53. 53.
    E. Brézin, J.C. Le Guillou J. Zinn-Justin and B.G. Nickel: Phys. Lett. 44A, 227 (1973)ADSGoogle Scholar
  54. 54.
    E. Brézin, J.C. Le Guillou and J. Zinn-Justin: Phys. Rev. D15, 1544, 1558 0977)ADSGoogle Scholar
  55. 55.
    E. Brézin, J.C. Le Guillou and J. Zinn-Justin: in “Phase Transitions and Critical Phenomena” ed. C. Domb and M.S. Green (Academic) Vol.6 (1976)Google Scholar
  56. 56.
    I.D. Lawrie and S. Sarbach: “Multicritical Phenomena” in “Phase Transitions and Critical Phenomena” ed. C. Domb and J.L. Lebowitz (Academic) Vol. 8 (1983)Google Scholar
  57. 57.
    G.F. Mazenko: Lecture notes in this volumeGoogle Scholar
  58. 58.
    V. Döhm: “Dynamics Near Multicritical Points”, in “Multicritical Phenomena” ed. T. Riste(Plenum)(1983)Google Scholar
  59. 59.
    C.P. Enz: “Dynamic Critical Phenomena and Related Topics” (Springer, Lecture notes in Physics Vol.104) (1979)Google Scholar
  60. 60.
    G.F. Mazenko and O.T. Valls: “The Real Space Dynamic Renormalisation Group”, in reference [30]Google Scholar
  61. 61.
    R.B. Stinchcombe: Phys. Rev. Lett. 50, 200 (1983)CrossRefADSMathSciNetGoogle Scholar
  62. 62.
    C.K. Harris and R.B. Stinchcombe: Phys. Rev. Lett. 50, 1399 (1983)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • R. B. Stinchcombe
    • 1
  1. 1.Theoretical Physics DepartmentOxfordEngland

Personalised recommendations