Structure of Interfaces

  • H. Müller-Krumbhaar
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 47)


The investigation of interface-properties has become a very active field of research. On all scales from atomistic lengths to macroscopic dimensions one observes numerous collective phenomena, most of them being only partly understood. The best microscopic knowledge is based on lattice models of crystal surfaces /1,2/ including surface diffusion /2/ and the mechanism of surface roughening /3/. The solid-liquid interface important in the melting-freezing problem is substantially less understood /4/. A phenomenon related to both melting and roughening is the depinning or wetting transition /5/, where a fluctuating interface interacts with a rigid surface. Within an adsorbed layer on a surface complicated superstructures (incommensurability) appear. Closely related is the effect of surface reconstruction /6/. For the macroscopic growth of crystals a number of macro-structures like surface-spirals play a dominant role /7/. As soon as long-range transport of material and heat by diffusion comes into play one enters the field of “pattern formation” via dynamic destabilization of plane interfaces /8/. In two-component systems like steel, lamellar structures in the bulk of the material may be formed by eutectic crystallization /9/.


Pattern Formation Adsorbed Layer Lamellar Structure Surface Reconstruction Plane Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List of references

  1. /1/.
    General reviews: “Modern theory of crystal growth I” (Springer Series: Crystals; Growth, Properties and Applications” Heidelberg 1983); A.A. Chernov, H. Müller-Krumbhaar ed.Google Scholar
  2. /1a/.
    H. Müller-Krumbhaar in “Cohesive Properties of Semiconductors under Laser Irradiation”, L.D. Laude ed., NATO-ASI-Series E, 69 (M. Nijhoff Publ., The Hague, 1983)Google Scholar
  3. /2/.
    Lattice models: H. Müller-Krumbhaar, Phys. Rev. B10, 1308 (1974)ADSGoogle Scholar
  4. /2a/.
    Y. Saito, H. M-K., J. Chem. Phys. 74, 721 (1981).ADSGoogle Scholar
  5. /2b/.
    Y. Saito, H. M-K., J. Chem. Phys. 70,1078 (1979).ADSCrossRefGoogle Scholar
  6. /3/.
    Roughening transition: J.D. Weeks in “Ordering in Strongly Fluctuating Condensed Matter Systems”; T. Riste ed. Vol. B50, (Plenum Press, N.Y. 1979);Google Scholar
  7. /3a/.
    Y. Saito, H. M-K., Phys. Rev. B23, 308 (1981)ADSGoogle Scholar
  8. /4/.
    Melting and Solid-Liquid Interface: D. Oxtoby, A.D.J. Haymet, J. Chem. Phys. 76, 6262 (1982)ADSCrossRefGoogle Scholar
  9. /4a/.
    A. Ladd, L. Woodcock, Mol. Phys. 36, 611 (1978);Review by A. Bonissent in ref. /1/; and byADSCrossRefGoogle Scholar
  10. /4b/.
    F.F. Abraham, Rep. Progr. Phys. 45, 1113 (1982).ADSCrossRefGoogle Scholar
  11. /4c/.
    T.F. Meister, J. Chem. Phys. 79, 426 (1982)ADSCrossRefGoogle Scholar
  12. /4d/.
    Y. Saito (2-dim), Phys. Rev. B26, 6239 (1982)ADSGoogle Scholar
  13. /5/.
    Layered Interfaces (Pinning, Wetting, etc.): M. Wortis, R. Pandit, M. Schick in “Melting, Localization and Chaos”, R. Kalia and P. Vashishta eds. (North Holland, N.Y. and Amsterdam, 1982)Google Scholar
  14. /5a/.
    H. Nakanishi, M.E. Fisher, Phys. Rev. Lett. 49 1565, (1982)ADSCrossRefGoogle Scholar
  15. /5b/.
    R. Lipowski, Phys. Rev. Letters 49, 1575 (1982)ADSCrossRefGoogle Scholar
  16. /5c/.
    D. Kroll, R. Lipowski, R.K.P. Zia, Phys. Rev. B27, 4499 (1983) T. Meister, H. Müller-Krumbhaar, preprintADSGoogle Scholar
  17. /6/.
    Surface reconstruction: E. Tosatti, Solid State Comm. 25, 637 (1978)ADSCrossRefGoogle Scholar
  18. /6a/.
    P. Bak, Solid State Comm. 32, 581 (1979)ADSCrossRefGoogle Scholar
  19. /6b/.
    E. Allroth, H. M-K., Phys. Rev. A27, 1575 (1983)ADSGoogle Scholar
  20. /7/.
    Macroscopic Structure: For a review on computer simulations in crystal growth see: H. M-K., Chapter 7 in “Monte Carlo Methods in Statistical Physics”, K. Binder, ed. (Springer Verlag, Heidelberg, 1979).Google Scholar
  21. /7a/.
    Local equation of motion (variational): H. M-K., T.W. Burkhardt, D. Kroll, J. Crystal Growth 38, 13 (1977)CrossRefGoogle Scholar
  22. /8/.
    Pattern Formation (Influence of Transport): Review: J.S. Langer, Rev. Mod. Phys. 52, 1 (1980)ADSCrossRefGoogle Scholar
  23. /8a/.
    Dendritic crystallization: J.S. Langer, H. M-K. Acta Metall. 26, 1681, (1978)CrossRefGoogle Scholar
  24. /8b/.
  25. /8c/.
  26. /8d/.
    Acta Metall. 29, 145 (1981)CrossRefGoogle Scholar
  27. /9/.
    Eutectics: J.S. Langer, Phys. Rev. Lett. 44, 1023 (1980)ADSCrossRefGoogle Scholar
  28. /10/.
    Mode Selection: J.S. Langer, H. M-K., Phys. Rev. A27, 499 (1983)ADSGoogle Scholar
  29. /10a/.
    G. Dee, J.S. Langer, Phys. Rev. Lett. 50, 383 (1983)ADSCrossRefGoogle Scholar
  30. /10b/.
    D. Aronson, H. Weinberger, Adv. Math, 30, 33 (1978)MathSciNetMATHCrossRefGoogle Scholar
  31. /10c/.
    M. Kerszberg, Phys. Rev. B27, 3909 (1983)ADSGoogle Scholar
  32. /10d/.
    L. Kramer, E. Ben-Jacob, H. Brand. M.C. Cross, Phys. Rev. Lett. 49, 1891 (1982)MathSciNetADSCrossRefGoogle Scholar
  33. /10e/.
    H. M-K., Proceedings of “NATO-Workshop on Chemical Instabilities”, Austin, Texas 1983, G. Nicolis, ed., (D. Reidel Publ. Co, Dordrecht, Holland, 1983) PreprintGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • H. Müller-Krumbhaar
    • 1
  1. 1.Institut für FestkörperforschungKernforschungsanlage JülichJülichFed. Rep. of Germany

Personalised recommendations