Skip to main content

Transition to Deterministic Chaos in a Hydrodynamic System

  • Conference paper
  • 147 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 47))

Abstract

Nonlinear hydrodynamic systems often exhibit transition to chaotic behaviour when a properly defined stress parameter is increased. According to an idea due to Landau (1) the route to chaos has been conjectured to consist of a sequence of bifurcation points at which many incommensurate frequencies are gradually introduced. At variance with this, Lorenz (2) and Ruelle and Takens (3) have sugqested that fluid turbulence is associated with the existence of a strange attractor in phase space. Therefore chaotic behaviour is actually caused by finite dimensional deterministic dynamics and is a consequence of the sensitivity of the solutions to the initial conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refecences

  1. L.D. Landau and E.M. Lifshitz: Fluid Mechanics (Pergamon, Oxford, 1959).

    Google Scholar 

  2. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963).

    Article  ADS  Google Scholar 

  3. D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J. Maurer and A. Libchaber, J. Phys. (Paris) Lett. 41, L515 (1980);

    Article  Google Scholar 

  5. A. Libchaber and J. Maurer, J. Phys, (Paris) Coll. C3 41, C3 51 (1980);

    Google Scholar 

  6. A. Libchaber and J. Maurer, Nonlinear Phenomena at Phase Transitions, ed. T. Riste (Plenum, 1982).

    Google Scholar 

  7. M. Giglio, S. Musazzi and U. Perini, Phys.Rev.Lett. 47, 243 (1981).

    Article  ADS  Google Scholar 

  8. A. Libchaber, C. Laroche and S. Fauve, J. Phys. (Paris) Lett. 43, L211 (1982).

    Article  Google Scholar 

  9. M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978), Phys. Lett. 74A, 375

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. (1979).Commun. Math. Phys. 77, 65 (1980).

    Google Scholar 

  11. At the NATO Advanced Study Workshop Testing Non-Linear Dynamics, Haverf. College, Pa., June 83, we learned of studies of this type by three groups: P. Berge and M. Dubois; J. Guckenheimer, G. Buzyna and R. Pfeffer; A. Brandstater, J. Swift, H. Swinney, A. Wolf, J.D. Farmer, E. Jen and J.P. Crutchfield.

    Google Scholar 

  12. S. Chandrasekkar, Hydrodynamic and Hydromagnetic Stability, (Clarendon, Oxford, 1961).

    Google Scholar 

  13. F.H. Busse, Rep. Progr. Physics 41, 1929 (1978).

    Article  ADS  Google Scholar 

  14. M. Giglio, S. Musazzi and U. Perini, Evolution of Order and Chaos, ed. H. Haken (Springer-Verlag, Berlin Heidelberg New York, 1982).

    Google Scholar 

  15. For further reading on this subject see, for example

    Google Scholar 

  16. E. Ott, Rev. Mod. Phys. 53, 655 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. R. Shaw, Z. Naturforsch. 36 a, 80 (1981)

    MathSciNet  ADS  MATH  Google Scholar 

  18. J.D. Farmer, Physica 4D, 366 (1982).

    MathSciNet  ADS  Google Scholar 

  19. B. Mandelbrot, Fractals-Form, Chance and Dimension (Freeman, San Francisco, 1977).

    MATH  Google Scholar 

  20. J.L. Kaplan and J.A. Yorke, Functional Differential Equations and Approximations of Fixed Points, eds. H.O. Walther, Lecture Notes in Math. 730 (Springer, 1979).

    Google Scholar 

  21. N.H. Packard, J.P. Crutchfield, J.D. Farmer and K.S. Shaw, Phys. Rev. Lett. 45, 712 (1980).

    Article  ADS  Google Scholar 

  22. J. Guckenheimer, Nature 298, 358 (1982).

    Article  ADS  Google Scholar 

  23. P. Grassberger and J. Procaccia, Phys. Rev. Lett. 50, 346 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Ben-Mizrachi, I. Procaccia and P. Granberger, Phys. Rev. A, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giglio, M., Musazzi, S., Perini, U. (1983). Transition to Deterministic Chaos in a Hydrodynamic System. In: Benedek, G., Bilz, H., Zeyher, R. (eds) Statics and Dynamics of Nonlinear Systems. Springer Series in Solid-State Sciences, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82135-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82135-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82137-0

  • Online ISBN: 978-3-642-82135-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics