Low-Frequency Dynamics of Soliton Lattices

  • R. Zeyher
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 47)


One of the most interesting features of incommensurably modulated solids is the appearance of topological defects, called discommensurations, domain walls, or simply solitons [1,2]. These defects are arranged in a periodic way with a period which is irrational in units of the original lattice constant. The existence as well as the static properties of these soliton lattices have been proven and investigated in many solids such as metals with a quasi one- and two-dimensional Fermi surface (e.g., 2H-TaSe2), magnetic systems with competing interactions (e.g., CeSb), and many insulators (e.g., BaMnF4, K2SeO4, ThBr4, thiourea) (see for instance [3]).


Sound Wave Singular Term Acoustic Phonon Topological Defect Ultrasonic Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.L. Mc Millan: Phys. Rev. B12, 1197 (1975)ADSGoogle Scholar
  2. 2a.
    R.Â. Cowley and A.D. Bruce: J. Phys. C11, 3577 (1978)ADSGoogle Scholar
  3. 2b.
  4. 2c.
  5. 3.
    P. Bak: Rep. Progr. Phys. 45, 587 (1982)MathSciNetADSCrossRefGoogle Scholar
  6. 4.
    H. Cailleau, F. Muossa, C.M.E. Zeyen, and J. Bouillot: Sol. State Comm. 33, 407 (1980)ADSCrossRefGoogle Scholar
  7. 5.
    L. Bernard, R. Currat, P. Delamoye, C.M.E. Zeyen, S. Hubert and R. de Kouchkovsky: J. Phys. C16, 433 (1983)ADSGoogle Scholar
  8. 6.
    K.B. Lyons, T.J. Negram, and H.J. Guggenheim: Phys. Rev. B25, 1791 (1982)ADSGoogle Scholar
  9. 7.
    D.J. Lockwood, A.F. Murray and N.L. Rowell: J. Phys. C14, 753 (1981)ADSGoogle Scholar
  10. 8.
    C.X. An, J.P. Benoit, G. Hauret and J.P. Chapelle: Sol. State Comm. 31, 581 (1979)ADSCrossRefGoogle Scholar
  11. 9.
    G. Hauret and J.P. Benoit: Ferroelectrics 40, 1 (1982)CrossRefGoogle Scholar
  12. 10.
    I. Hatta, M. Hanami and K. Hamano: J. Phys. Soc. Japan 48, 160 (1980)ADSCrossRefGoogle Scholar
  13. 11.
    R. Zeyher and W. Finger: Phys. Rev. Lett. 49, 1833 (1982)ADSCrossRefGoogle Scholar
  14. 12.
    W. Rehwald: Adv. Phys. 22, 721 (1973)ADSCrossRefGoogle Scholar
  15. 13.
    S.K. Ma: Modern Theory of Critical Phenomena (W.A. Benjamin, London 1976)Google Scholar
  16. 14.
    G.F. Mazenko, S. Ramaswamy and J. Toner: Phys. Rev. Lett. 49, 51 (1982)ADSCrossRefGoogle Scholar
  17. 15.
    S. Bhattacharya and J.B. Ketterson: Phys. Rev. Lett. 49, 997 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • R. Zeyher
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. of Germany

Personalised recommendations