Problems in a Digital Description of a Configuration of Atoms and Some Other Geometrical Topics in Physics

  • T. Ogawa
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 46)


This paper is based on my two separate talks at the symposium, but not a simple combination of them. Their titles are “WHAT CAN BE SEEN FROM THE VORONOI-DELAUNAY ANALYSES?”, and “A MAZE-LIKE PATTERN IN THE MONODISPERSIVE LATEX SYSTEM”. My own subject is to construct the science on the indescribable orders. In this paper, these materials are rearranged together with other miscellanea so that my underlying philosophy may reveal itself.


Elementary Process Triangular Lattice Voronoi Tessellation Triangular Face Voronoi Polyhedron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Nakaya: Snow Crystals: Natural and Artificial, (Harvard Univ. Press, 1954 ). The poem appears in U. Nakaya: ‘Yuki (Snow)’ ( A monograph written in Japanese ), ( Iwanami, 1937 ).Google Scholar
  2. 2.
    F. C. Frank: Science and Technology of Industrial Diamond, 119 (1967).Google Scholar
  3. 3.
    In Nakaya’s monograph [1], the poem follows immediately after the quotation of the Terada’s metaphor of volcanic ejecta by Rosetta stone in T. Terada: ‘Ko-Asama (name of a volcano)’, (An Essay in Japanese).Google Scholar
  4. 4.
    R. Kikuchi: Phys. Rev. 81, 988 (1951).zbMATHADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    G. F. Voronoi: J. Reine Angew. Math. 134, 198 (1908).zbMATHCrossRefGoogle Scholar
  6. 6.
    B. N. Delaunay (Delone): Bull. Acad, des Sci. USSR, Classe Sci. Math. Nat. 6, 793 (1934) Soviet Math. 812 (1961).Google Scholar
  7. 7.
    T. Ogawa and M. Tanemura: Prog. Theor. Phys. 51, 399 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    The crystallization into bcc-like order was first reported in M. Tanemura, Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita and A. Ueda: Prog. Theor. Phys. 1079 (1977). There, the Voronoi tessellation is made for the ‘averaged’ configuration over a certain time interval not for the instantaneous one to see the order more clearly.Google Scholar
  9. 9.
    The crystallization into an fee crystal is analyzed in M. Tanemura, Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita and A. Ueda: Prog. Theor. Phys. 59, 323 (1978). The technique of a uniaxial deformation is adopted to see an fee order as a bcc-like order.Google Scholar
  10. 10.
    Our computer alqorithm of the Voronoi tessellation is to be published in M.Tanemura, T.Ogawa and N.Ogita: J. Computational Phys.Google Scholar
  11. 11.
    J. L. Finney: Proc. Roy. Soc. A319. 479, 495 (1970).ADSGoogle Scholar
  12. 12.
    T. Ogawa: ‘Suri-Kagaku (Mathematical Science)’ (in Japanese) No. 231, 7 (1982).Google Scholar
  13. 13.
    W. Thomson (Lord Kelvin): Proc. Roy. Soc. 55., 1 (1894).zbMATHCrossRefGoogle Scholar
  14. 14.
    J. L. Meijering: Philips Res. Rep. 270 (1953).Google Scholar
  15. 15.
    F. W. Smith: Can. J. Phys. 42., 2052 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    J. A. Barker, M. R. Hoare and J. L. Finney: Nature 25L 120 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    R. Yamamoto, H. Shibuta, T. Mihara, K. Haga and M. Doyama: Proc. 4th Int. Conf. on Rapidly Quenched Metals, ed. by T. Masumoto and K. Suzuki, (Japan Inst, of Metals, 1982), Vol. 1 p. 283.Google Scholar
  18. 18.
    S. Hales: Vegetable Staticks ( Innys and Woodward, London, 1727 ).Google Scholar
  19. 19.
    D’Arcy Thompson: On GrowthTnd Form. (Cambridge First ed. 1917, Second ed. 1942). E. B. Matzke: Amer. J. Botany 33, 58 (1946).Google Scholar
  20. 20.
    J. W. Marvin: Amer. J. Botany 26, 487 (1939).CrossRefGoogle Scholar
  21. 21.
    J. W. Marvin: Amer. J. Botany 26, 280, 487 (1939). E. B. Matzke: Amer. J. Botany 26., 288 (1939).CrossRefGoogle Scholar
  22. 22.
    C. H. Desch: J. Inst. Metals 22, 241 (1919).Google Scholar
  23. 23.
    J. Kepler: Harmonis Mundi, (1619). Kepler is supposed to be the first who studied the problem of covering a plane by congruent regular polygons and noticed that five- and seven-fold symmetry contradict the crystalline order.Google Scholar
  24. 24.
    T. Ogawa: Z. Phys. B28, 73 (1977). Especially, see Sec. 1 of this paper. The difference between two and three dimensions was also discussed in Sec.5 of Ref.7.ADSGoogle Scholar
  25. 25.
    B. Gruenbaum: Convex Polytopes, (Interscience, 1967 ).Google Scholar
  26. 26.
    P. J. Federico: J. Combinatorial Theory 7, 155 (1969).zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Hucheret J. Grolier: Comptes Rendus 284, A220 (1977).Google Scholar
  28. 28.
    A preliminary report is to be published in T. Ogawa: J. Phy. Soc. Japan. 52 (Suppl.) (1983).Google Scholar
  29. 29.
    Y. Koshikiya and S. Hachisu: Lecture at COLLOID SYMPOSIUM of JAPAN (1982).Google Scholar
  30. 30.
    G. H. Wannier: Phys. Rev. 79, 357 (1950).zbMATHADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    C. Domb: Adv. in Phys..9, 149 (1960).ADSCrossRefGoogle Scholar
  32. 32.
    The similarity between the pattern of the magnetic domains and that in the marking of Siganus javus is noticed by E. Feldtkeller and O. Ishii. Feldtkeller: private communication through 0. Ishii. O. Ishii: Electronics Journal (in Japanese) JJ, 1716 (1972).Google Scholar
  33. 33.
    The similarity between the pattern of the magnetic domains and that in the brain coral is pointed out as the meanders in P. S. Stevens: Patterns in Nature, ( Little, Brown & Co., 1974 ).Google Scholar
  34. 34.
    R. E. Rosenweig: Scientific American, 247, No. 4, 124 (1982).CrossRefGoogle Scholar
  35. 35.
    M. R. Hoare: Adv. in Chem. Phys. ed. by I. Prigogine Vol.40, p.49 (Interscience, 1979 ).Google Scholar
  36. 36.
    M. H. Cohen and C. S. Crest: Phys. Rev. B20, 1077 (1979).ADSCrossRefGoogle Scholar
  37. 37.
    The proceedings have been published in T. Ogawa (ed.):‘Bussei Kenkyu (mimeographed circular in Japanese)’ 36, A1 (1981). The author’s philosophy as an organizer is mentioned in T. Ogawa: ‘Butsuri (Bulletin of Phys. Soc. of Japan, in Japanese)’, 36, 867 (1981).Google Scholar
  38. 38.
    T. Doi: ‘Sekka-Zusetsu (Illustration of Snow Blossoms, in Japanese)’ (1833) and ‘Zoku-Sekka-Zusetsu (continued)’ (1840), reprinted with a commentary in Japanese by T. Kobayashi, (Tsukiji Shokan Publ. Co., Tokyo, (1966). Revised ed. (1981).Google Scholar
  39. 39.
    W. Scoresby: An Account of the Arctic Regions, with a History and Description of the Northern Whale-fishery, (Edinburgh, 1820 ).Google Scholar
  40. 40.
    J. Glaisher: (1855), cited in G. Hellman: Schneekrystalle, ( Berlin, 1893 ).Google Scholar
  41. 41.
    T. Kobayashi: The commentary on Ref. 38 (1968).Google Scholar
  42. 42.
    T. Terada: Scientific Papers, vol.1–6 (Iwanami, 1937). Main literature on Terada written in English is as follows, P. P. Ewald (ed.): Fifty years of X-Ra, y Diffraction (Intn. Union of Crystallography, Utrecht, 1962) B. Tamamushi: Philosophical Studies of Japan (Japanese National Commission for UNESCO, Tokyo) Vol.8, p. 117 (1967).Google Scholar
  43. 43.
    M. Hirata: ‘Kagaku (Science, in Japanese)’ 3, 461 (1933). M. Hirata: Sci. Pap. Inst. Phys. Chem. Res. 26, 122 (1935). (On the origin of coloured patches of some kidney-beans.) See also K. Henke: Zool. Anz. Supplbd. 8 (1935).Google Scholar
  44. 44.
    H. Matsuda: in Physics of Random systems, (in Japanese ), ed. by Phys. Soc. of Japan p. 1 (Bai-fu-kan, 1981 ).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • T. Ogawa
    • 1
  1. 1.Institute of Applied PhysicsUniversity of TsukubaSakura, Ibaraki 305Japan

Personalised recommendations