Advertisement

Statistics of Two-Dimensional Amorphous Lattice and Some Applications

  • H. Kawamura
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 46)

Abstract

As is well known, topologically disordered condensed matter such as liquids and amorphous solids has the following structural characteristics. In the first place, crystalline long-range order is absent in spite of the fact that its density is rather high close to the corresponding crystal density. In the second place, it retains a short-range order which is quite similar to that of the crystal. In this sense, we may say that randomness and regularity coexist in the amorphous system. It takes an intermediate position between the gas (completely random) and the crystal (completely regular).

Keywords

Triangular Lattice Transfer Matrix Method Amorphous System Infinite Lattice Spin Freezing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Collins: Proc. Phys. Soc. 83, 553 (1964)CrossRefADSGoogle Scholar
  2. 2.
    H. Kawamura: Prog. Theor. Phys. 61, 1584 (1979)CrossRefADSGoogle Scholar
  3. 3.
    H. Kawamura: in preparationGoogle Scholar
  4. 4.
    B. J. Alder, T. E. Wainwright: Phys. Rev. 127, 359 (1962)CrossRefADSGoogle Scholar
  5. 5.
    J. Q. Broughton, G. H. Gilmer, J. D. Weeks: Phys. Rev. B25, 4561 (1982)Google Scholar
  6. 6.
    C. J. Schikel, G.W. Rathenau: In Physics of Non-Crystalline Solids, ( North Holland, Amsterdam 1965 ) p. 215Google Scholar
  7. 7.
    T. Egami, O. A. Sacli, A. W. Simpson, A. L. Terry, F.A. Wedgewood: J. Phys. C5, L2 61 (1972); In Amorphous Magnetism, ed. by H.O. Hooper, A.M. de Graaf ( Plenum, New York 1973 ) p. 27Google Scholar
  8. 8.
    G. Ferey, F. Varret, J.M.D. Coey: J.Phys. C12, L531 (1979)ADSGoogle Scholar
  9. 9.
    R.B. Kummer, R.E. Walstedt, S. Geschwind, V. Narayanamurti, G. E. Delvin: Phys. Rev. Letters 40, 1098 (1978); J. Appl. Phys. 50, 1700 (1979)CrossRefADSGoogle Scholar
  10. 10.
    K. Andres, R. N. Bhatt, P. Goalwin, T. M. Rice, R.E. Walstedt: Phys. Rev. B24, 244 (1981)CrossRefADSGoogle Scholar
  11. 11.
    S. Gregory: Phys. Rev. Letters: 39, 1035 (1977)CrossRefADSGoogle Scholar
  12. 12.
    L. Onsager: Phys. Rev. 65, 117 (1944)CrossRefMATHADSMathSciNetGoogle Scholar
  13. 13.
    G.H. Wannier: Phys. Rev. 79, 357 (1950)CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    H. Kawamura: to appear in J. Mag. and Mag. Mat. 41–43,H. Kawamura: in preparation (1983)Google Scholar
  15. 15.
    A. J.Bray, M. A. Moore, P. Reed: J. Phys. Cll, 1187 (1978)Google Scholar
  16. 16.
    K. Binder: Z. Physik B26, 339 (1977)ADSGoogle Scholar
  17. 17.
    I. Morgenstern, K. Binder: Phys. Rev. B22, 288 (1980)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • H. Kawamura
    • 1
  1. 1.Department of Physics, College of General EducationOsaka UniversityToyonaka 560Japan

Personalised recommendations