Advertisement

Path Integral Formulation of Quantum Propagation in a Dislocated Lattice

  • K. Kitahara
  • K. Nakazato
  • H. Araki
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 46)

Abstract

One simple example of topological disorder is disorder caused by dislocations. A remarkable feature of a dislocation is the following; the numbering of atomic positions is not uniquely determined but rather it is dependent on the path of numbering. In order to make this statement clear, let us consider a straight screw dislocation line in a simple cubic lattice as shown in Fig. l. If we number atomic positions along the path A→C→B, the relative position of B with respect to A is +1 in the x direction, +1 in the y direction and 0 in the z direction. On the other hand, if we number atomic positions along another path A→D→E→B, the relative position of B is +1, +1 and +1 in the three directions respectively. Thus the relative position of B with respect to A is counted differently along different paths.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kawamura, Z. Physik B29, 101 (1978); ibid. B30, 1 (1978); Y. Yshida and K. Kawamura, Z. Physik B32, 355(1979); K. Kawamura and Y. Yoshida, Z. Physik B34, 369 (1979).ADSMathSciNetGoogle Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity ( Pergamon Press, Oxford, 1970 ).Google Scholar
  3. 3.
    E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen ( Springer, Berlin, 1958 ).zbMATHGoogle Scholar
  4. 4.
    K. Kondo, RAAG Memoirs 1_, 459 (1955).Google Scholar
  5. 5.
    S. Amari, RAAG Memoirs 3, 163 (1962).Google Scholar
  6. 6.
    See for example, C. Miller, The Theory of Relativity (Oxford Univ. Press, London, 1952 ).Google Scholar
  7. 7.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals ( McGraw-Hill, New York, 1965 ).zbMATHGoogle Scholar
  8. 8.
    H. Araki, K. Kitahara and K. Nakazato, Prog. Theor. Phys. 66, 1895(1981)Google Scholar
  9. 9.
    S. F. Edwards, Proc. Phys. Soc. 91, 513 (1967).CrossRefzbMATHADSGoogle Scholar
  10. 10.
    Y. Aharonov and D. Böhm, Phys. Rev. 115, 485 (1959).CrossRefzbMATHADSMathSciNetGoogle Scholar
  11. 11.
    C. C. Gerry and V. A. Singh, Phys. Rev. D20, 2550 (1979).ADSGoogle Scholar
  12. 12.
    See for example, L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory) ( Pergamon Press, New York, 1976 ).Google Scholar
  13. 13.
    M. G. Brereton and S. Shah, J. Phys. AT4, L51 (1981); ibid. AT5 985 (1982).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • K. Kitahara
    • 1
  • K. Nakazato
    • 2
  • H. Araki
    • 3
  1. 1.Department of Liberal ArtsShizuoka UniversityShizuoka 422Japan
  2. 2.Central Research LaboratoryHitachi Co.Kokubunji 185Japan
  3. 3.Technical Research CenterNippon Mining Co.Toda 335Japan

Personalised recommendations