Mixed Convection in a One-Component Fluid

  • Jean Karl Platten
  • Jean Claude Legros


In chapter III, we have shown that one can study the stability of isothermal forced convection, and determine the critical Reynolds number by solving the Orr-Sommerfeld equation, or the more complex nonlinear problem. Critical Reynolds numbers of the order of 103 are obtained. However it is possible to induce hydrodynamic instabilities at much smaller Reynolds numbers by adding a destabilizing force as e.g. an adverse temperature gradient (the fluid is heated from below). In chapter VII we already studied the case of non-isothermal forced convection, but the effect of a temperature gradient on density was ignored. On the contrary, the present chapter is devoted to the coupling between the Orr-Sommerfeld problem and the Rayleigh-Bénard instability. Thus it focuses on the study of “stratified” flow, and mainly to its stability. Such a study is far from being purely academic since such flows are of considerable interest in nature as e.g. in geophysical fluid dynamics. Let us mention the effect of vertical temperature gradients on the wind in the low atmosphere, or the effect of temperature variations in oceanography.


Reynolds Number Prandtl Number Rayleigh Number Table VIII Critical Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Notes

  1. A.P. GALLAGHER and A.McD. MERCER, Proc. Roy. Soc. London, A 286, 117 (1965).ADSMathSciNetGoogle Scholar
  2. J.W. DEARDORFF, Phys. Fluids, 8(6), 1027 (1965).CrossRefADSGoogle Scholar
  3. K.S. GAGE and W.H. REID, J. Fluid Mech., 33(1), 21 (1968).CrossRefMATHADSGoogle Scholar
  4. J.K. PLATTEN, Int. J. Engng. Sei., 9, 855 (1971).CrossRefMATHGoogle Scholar
  5. G. VANDERBORCK and J.K. PLATTEN, Int. J. Engng. Sci., 12, 897 (1974).CrossRefMATHGoogle Scholar
  6. K.C. CHENG and R.-S. WU, Trans. of the A.S.M.E., Journ. Heat Transfer, 564, (November 1976).Google Scholar
  7. M. PRATS, Journal of Geophysical Research, 71(20), 4835, 1966.ADSGoogle Scholar
  8. J.K. PLATTEN and M. LEFEBVRE, Physica, 51, 330(1971).CrossRefADSGoogle Scholar
  9. J.-M. LUIJKX, J.K. PLATTEN and J.-Cl. LEGROS, Int. J. Heat Mass Transfer, 24(7), 1287 (1981).CrossRefGoogle Scholar
  10. J.-M. LUIJKX, Ph. D. Thesis, University of Mons, 1983.Google Scholar
  11. T. TERADA, Rep. Aer. Res. Inst., 3 n° 31, 3 (1928).Google Scholar
  12. S. MAL, Beiträge zur Physik des Atmosphäre, 17, 40 (1930).Google Scholar
  13. G. WALKER and PHILLIPS, Quart. J. R. Met. Soc., 58, 23 (1932)ADSGoogle Scholar
  14. A. GRAHAM, Phil. Trans. Roy. Soc. (A), 232, 285 (1933)CrossRefADSGoogle Scholar
  15. K. CHANDRA, Proc. Roy. Soc., 164(A), 231 (1938).ADSGoogle Scholar
  16. D. AVSEC, Tourbillons thermoconvectifs dans l’air. Application à la météorologie. Publ. Ministére de l’Air, Paris (1939).Google Scholar
  17. D. BRUNT, Compendium of Meteorology, (American Meteorological Society, Boston), p. 1255 (1951).Google Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1984

Authors and Affiliations

  • Jean Karl Platten
    • 1
  • Jean Claude Legros
    • 2
  1. 1.Service de Chimie Physique ThermodynamiqueUniversité de l’Etat à Mons, Faculté des SciencesMonsBelgique
  2. 2.Ecole Polytechnique, Faculté des Sciences AppliquéesUniversité Libre de BruxellesBruxellesBelgique

Personalised recommendations