Advertisement

Catalytic Oxidation of NH3 on a Polycrystalline Pt Surface Studied by Laser Induced Fluorescence

  • G. S. Selwyn
  • M. C. Lin
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 33)

Abstract

The catalytic oxidation of NH3 is currently a key industrial synthetic process for HNO3 production. The reaction is known to be very fast and highly efficient [1]. The major products of the reaction on Pt surfaces are H2O and N2 or NO, depending on reaction temperature and the relative concentration of NH3 and O2 according to the following stoichiometries:
$$ 4N{H_3}+3{O_2} \to2{N_2}+6{H_2}O $$
$$ 4N{H_3}+5{O_2}\to 4NO + 6{H_2}O.$$

Keywords

Catalytic Oxidation Surface Species Chemical Engineer Progress Conventional Mass Spectrometry Stable Surface Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. H. Chilton, “The Manufacture of Nitric Acid by the Oxidation of Ammonia,” (Chemical Engineering Progress Monograph Series, No. 3, Vol. 56). American Institute of Chemical Engineers, New York, 1960.Google Scholar
  2. 2.
    T. Pignet and L. D. Schmidt, J. Catal. 40, 212 (1975).CrossRefGoogle Scholar
  3. 3.
    C. W. Nutt and S. Kapur, Nature (London) 220, 697 (1968)CrossRefGoogle Scholar
  4. C. W. Nutt and S. Kapur, Nature (London)224, 169 (1969).CrossRefGoogle Scholar
  5. 4.
    J. J. Ostermair, J. R. Katzer and W. H. Manogue, J. Catal. 33, 457 (1974).CrossRefGoogle Scholar
  6. 5.
    Ya. M. Fogel, B. T. Nadykto, V. F. Rybalko, V. I. Shvachko and I. E. Korobchanskaya, Kinet. Catal. 5, 496 (1964).Google Scholar
  7. 6.
    J. L. Gland and V. N. Korchak, J. Catal. 53, 9 (1978).CrossRefGoogle Scholar
  8. 7.
    L. D. Talley, D. E. Tevault and M. E. Lin, Chem. Phys. Lett. 66, 584 (1979).CrossRefGoogle Scholar
  9. 8.
    D. E. Tevault, L. D. Talley and M. C. Lin, J. Chem. Phys. 72, 3314 (1980).CrossRefGoogle Scholar
  10. 9.
    L. D. Talley and M. C. Lin, AIP Conf. Proc. 61, 297 (1980).Google Scholar
  11. 10.
    G. T. Fujimoto, G. S. Selwyn and M. C. Lin, unpublished work.Google Scholar
  12. 11.
    G. S. Selwyn and M. C. Lin, Chem. Phys. 67, 213 (1982).CrossRefGoogle Scholar
  13. 12.
    M. C. Lin and J. R. McDonald, in “Reactive Intermediates in the Gas Phase: Generation and Monitoring,” D. W. Setser, ed., Academic Press, New York, p. 233 (1979).Google Scholar
  14. 13.
    Ya. M. Fogel, B. T. Nadykto, V. F. Rybalko, R. P. Slabaspitskii, I. E. Korobchanskaya and V. I. Schvachko, Kinet. Catal. 5, 127 (1964).Google Scholar
  15. 14.
    M. Drechsler, H. Hoinkes, H. Kaarmann, H. Wilsch, G. Ertl and M. Weiss, Appl. Surf. Sci. 3, 217 (1979).CrossRefGoogle Scholar
  16. 15.
    G. S. Selwyn, G. T. Fujimoto and M. C. Lin, J. Phys. Chem. 86, 760 (1982).CrossRefGoogle Scholar
  17. 16.
    Galen Fisher, private communication (1982).Google Scholar
  18. 17.
    B. L. Halpern, E. J. Murphy and J. B. Fenn, J. Catal. 71, 434 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • G. S. Selwyn
    • 1
  • M. C. Lin
    • 1
  1. 1.Chemistry DivisionNaval Research LaboratoryUSA

Personalised recommendations