Effect of Spanwise Rotation on Two-Dimensional Zero Pressure Gradient Turbulent Boundary Layers

  • J. H. Watmuff
  • H. T. Witt
  • P. N. Joubert
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

Mean velocity profiles and broadband turbulence data are presented for boundary layers subject to system rotation. Significant deviations from zero rotation behaviour are reported. The differences in the mean velocity profiles appear to scale with a local Ekman Number. Spanwise skin friction measurements indicate that large scale longitudinal vortices may be present in the destabilised layers.

Keywords

Vortex Vorticity Hunt Smit Destab 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradshaw, P.: The Effect of Wind Tunnel Screens on Nominally Two- Dimensional Boundary Layers. J. Fluid Mech., Vol. 22, pp. 659–687. (1967).Google Scholar
  2. 2.
    Johnston, J.P.; Halleen, R.M. and Lezius, D.K.: Effects of Spanwise Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow. J. Fluid Mech.,Vol. 56,pp. 533–557. (1972).CrossRefADSGoogle Scholar
  3. 3.
    Patel, V.C.: Calibration of the Preston Tube and Limitations on its Use in Pressure Gradients. J. Fluid Mech.,Vol. 23,pp. 135–208. (1965).CrossRefADSGoogle Scholar
  4. 4.
    Koyama, H.; Masuda, S.; Ariga, I. and Watanabe, I.: Stabilising and Destabilising Effects of Coriolis Force on Two-Dimensional Laminar and Turbulent Boundary Layers. J. Eng. Power, Trans. ASME,Vol. 101,pp. 23–31. (1979).CrossRefADSGoogle Scholar
  5. 5.
    Coles, D.E. and Hirst, E.A.: Proceedings of AFOSR-IFP-Stanford Conference on Turbulent Boundary Layer Prediction. Vol.2.Stanford University (1968).Google Scholar
  6. 6.
    Bradshaw, P.: The Analogy Between Streamline Curvature and Buoyancy in Turbulent Shear Flow. J. Fluid Mech.,Vol. 36,pp. 177–191. (1969).CrossRefMATHADSGoogle Scholar
  7. 7.
    Halleen, R.M. and Johnston, J.P.: The Influence of Rotation on Flow in a Long Rectangular Channel - An Experimental Study. Thermosciences Div. Stanford University Report MD-18. (1967).Google Scholar
  8. 8.
    Simpson, R.L.: Characteristics of Turbulent Boundary Layers at Low Reynolds Number with and without Transpiration. J. Fluid Mech.,Vol. 42, pp. 769–802. (1970).CrossRefADSGoogle Scholar
  9. 9.
    Huffman, G.D. and Bradshaw, P.: A Note on von Karman’s Constant in Low Reynolds Number Turbulent Flows. J. Fluid Mech.,Vol. 53,pp. 45–60. (1972).CrossRefADSGoogle Scholar
  10. 10.
    Coles, D.E.: The Turbulent Boundary Layer in a Compressible Fluid. RAND Corp. Rep. R-403-PR, Appendix A. (1962).Google Scholar
  11. 11.
    Perry, A.E. and Chong, M.S.: On the Mechanism of Wall Turbulence. J. Fluid Mech.,Vol. 119,pp. 243–256. (1982).CrossRefGoogle Scholar
  12. 12.
    Smits, A.J.; Young, S.T.B, and Bradshaw, P.: The Effect of Short Regions of High Surface Curvature on Turbulent Boundary Layers. J. Fluid Mech., Vol. 94,pp. 209–242. (1979).CrossRefADSGoogle Scholar
  13. 13.
    Hunt, I.A. and Joubert, P.N.: Effects of Small Streamline Curvature on Turbulent Duct Flow. J. Fluid Mech.,Vol. 91,pp. 633–659. (1979).CrossRefADSGoogle Scholar
  14. 14.
    Moore, J.: Effects of Coriolis Forces on Turbulent Flow in Rotating Channels. Rep.No. 89, Gas Turbine Laboratory, M.I.T. (1967).Google Scholar
  15. 15.
    Hart, J.E.: Instability and Secondary Flow in a Rotating Channel Flow. J. Fluid Mech.,Vol. 45,pp. 341–351. (1971).CrossRefMATHADSGoogle Scholar

Copyright information

© Springer, Berlin Heidelberg New York 1983

Authors and Affiliations

  • J. H. Watmuff
    • 1
  • H. T. Witt
    • 1
  • P. N. Joubert
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of MelbourneParkvilleAustralia

Personalised recommendations