Skip to main content

Genetics of β-Lactam-Producing Actinomycetes

  • Chapter
Antibiotics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 67 / 1))

  • 472 Accesses

Abstract

The commercial usefulness of novel β-lactam antibiotics has turned the interests of the pharmaceutical industry towards the Actinomycetales as a possible source. This group of organisms has provided over the years a rich harvest of new antibiotics, but only recently has it been shown that they are able to produce β-lactam antibiotics (Nagarajan et al. 1971; Nagarajan 1972). This group of substances had been thought to be produced only by fungi up to that point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharonowitz Y, Demain AL (1978) Carbon catabolite regulation of cephalosporin produc tion in Streptomyces clavuligerus. Antimicrob Agents Chemother 14: 159–164

    PubMed  CAS  Google Scholar 

  • Aharonowitz Y, Friedrich CG (1980) Alanine dehydrogenase of the beta-lactam antibiotic producer Streptomyces clavuligerus. Arch Microbiol 125: 137–142

    Article  PubMed  CAS  Google Scholar 

  • Akagawa H, Okanishi M, Umezawa H (1975) A plasmid involved in chloramphenicol production in Streptomyces venezuelae: evidence from genetic mapping. J Gen Microbiol 90: 336–346

    PubMed  CAS  Google Scholar 

  • Akagawa H, Okanishi M, Umezawa H (1979) Genetic and biochemical studies of chloramphenicol non-producing mutants of Streptomyces venezuelae carrying a plasmid. J Antibiot 32: 610–620

    PubMed  CAS  Google Scholar 

  • Alacevic M (1963) Interspecific recombination in Streptomyces. Nature 197:1323 Alikhanian SI, Ilyina TS, Lomovskaya ND (1960) Transduction in Actinomycetes. Nature 188: 245–246

    Google Scholar 

  • Baumann R, Kocher HP (1976) Genetics of Streptomyces glaucescens and regulation of melanin production. In: MacDonald KD (ed) Second international symposium on the genetics of industrial microorganisms. Academic Press, London, pp 535–551

    Google Scholar 

  • Benigni R, Petrov PA, Carere A (1975) Estimate of the genome size by renaturation studies in Streptomyces. Appl Microbiol 30: 324–326

    PubMed  CAS  Google Scholar 

  • Bibb MJ, Freeman RF, Hopwood DA (1977) Physical and genetical characterisation of a second factor, SCP 2, for Streptomyces coelicolor. Mol Gen Genet 154: 155–166

    Article  CAS  Google Scholar 

  • Bibb MJ, Ward JM, Hopwood DA (1978) Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274: 398–400

    Article  PubMed  CAS  Google Scholar 

  • Bibb MJ, Schettel JL, Cohen SN (1980) A DNA cloning system for interspecific gene transfer in antibiotic producing Streptomyces. Nature 284: 526–531

    Article  PubMed  CAS  Google Scholar 

  • Box SJ, Hood JD, Spear SR (1979) Four further antibiotics related to olivanic acid produced by Streptomyces olivaceus–fermentation, isolation, characterisation, and biochemical studies. J Antibiot 32: 1239–1247

    PubMed  CAS  Google Scholar 

  • Boronin AM, Mindlin SZ (1971) Genetic analysis of Actinomyces rimosus mutants with impaired synthesis of antibiotic ( In Russian ). Genetika 7: 125–159

    Google Scholar 

  • Boronin AM, Sadovnikova LG (1972) Elimination by acridine dyes of oxytetracyclin resistance in Actinomyces rimosus ( In Russian ). Genetika 8: 174–176

    Google Scholar 

  • Bradley SG, Lederberg J (1956) Heterokaryosis in Streptomyces. J Bacteriol 72: 219–225

    PubMed  CAS  Google Scholar 

  • Braendle DH, Szybalski W (1959) Heterokaryotic compatability, metabolic cooperation and genetic exchange in Streptomyces. Ann NY Acad Sci 81: 824–851

    Article  PubMed  CAS  Google Scholar 

  • Brown AG, Butterworth D, Cole M, Hanscombe G, Hood JD, Reading C, Rolinson GN (1976) Naturally occuring beta-lactamase inhibitors with antimicrobial activity. J Antibiot 29: 668–669

    PubMed  CAS  Google Scholar 

  • Canham PL, Michelson AM, Vining LC (1978) Plasmids and chloramphenicol production by Streptomyces species 3122 a (Abstr). 3 rd int symp genet ind micro-organisms, Madison, No 72, p 36

    Google Scholar 

  • Chang LT, Behr DA, Elander PP (1978) Effects of plasmid-curing agents on the cultural characteristics and kanamycin formation in a production strain of Streptomyces kanamyceticus (Abstr). 3 rd int symp genet ind micro-organisms, Madison, no 73, p 36

    Google Scholar 

  • Chater KF (1977) A site-specific endodeoxyribonuclease from Streptomyces albus CMI 52766 sharing site specificity with Providencia stuartii endonuclease Pst I. Nucleic Acids Res 4: 1989–1998

    Article  PubMed  CAS  Google Scholar 

  • Chater KF, Carter AT (1978) Restriction of a bacteriophage in Streptomyces albus P (CMI 52766) by endonuclease Sal PI. J Gen Microbiol 109: 181–185

    Google Scholar 

  • Chater KF, Carter AT (1979) A new wide host-range temperate bacteriophage ( R4) of Streptomyces and its interaction with some restriction-modification systems. J Gen Microbiol 115: 431–442

    Google Scholar 

  • Chater KF, Wilde LC (1976) Restriction of the bacteriophage of Streptomyces albus G involving endonuclease Sal I. J Bacteriol 128: 644–650

    PubMed  CAS  Google Scholar 

  • Chater KF, Wilde LC (1980) Streptomyces albus G mutants defective in the Sal GI restriction-modification system. J Gen Microbiol 116: 323–334

    PubMed  CAS  Google Scholar 

  • Cohen SN (1976) Transposable genetic elements and plasmid evolution. Nature 263: 731–738

    Article  PubMed  CAS  Google Scholar 

  • Danilenko VN, Yankovskii NK, Kalezhskii VE, Moshentseva VN, Sladkova IA, Kozlov YI, Fedorenko VA, Rebentish BA, Lomovskaya ND, Debabov VG (1979) Study of the structure and functioning of the kanamycin transposon of Actinomycetes, transferred in vitro to E. coli K12. Dokl Biol Sci 244: 701–704

    Google Scholar 

  • Demain AL (1974) How do antibiotic producing organisms avoid suicide? Ann NY Acad Sci 235: 601–602

    Article  PubMed  CAS  Google Scholar 

  • Fawcett PA, Usher JJ, Abraham EP (1976) Aspects of cephalosporin and penicillin biosyn thesis. In: MacDonald KD (ed) 2 nd International Symposium on the Genetics of Industrial Microorganisms. Academic Press, London New York San Francisco, pp 129–138

    Google Scholar 

  • Fincham JRS, Sastry GRK (1974) Controlling elements in Maize. Ann Rev Genet 8: 15–50

    Article  PubMed  CAS  Google Scholar 

  • Flett F, Wotten SF, Kirby R (1979) A common host-specificity in the restriction and modi fication of a bacteriophage by three distinct Streptomyces species. J Gen Microbiol 110: 465–467

    PubMed  CAS  Google Scholar 

  • Ford-Doolittle W, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603

    Article  Google Scholar 

  • Freeman RF, Hopwood DA (1978) Unstable naturally occuring resistance to antibiotics in Streptomyces. J Gen Microbiol 106: 377–381

    PubMed  CAS  Google Scholar 

  • Freeman RF, Bibb MJ, Hopwood DA (1977) Chloramphenicol acetyltransferase-independent chloramphenicol resistance in Streptomyces coelicolor A3(2). J Gen Microbiol 98: 453–465

    PubMed  CAS  Google Scholar 

  • Friend EJ, Warren JM, Hopwood DA (1978) Genetic evidence for a plasmid controlling fer- tility in an industrial strain of Streptomyces rimosus. J Gen Microbiol 106: 201–206

    Google Scholar 

  • Godfrey OW (1973) Isolation of regulatory mutants of the aspartic and pyruvic acid families and their effect on the antibiotic production in Streptomyces lipmanii. Antimicrob Agents Chemother 4: 73–79

    PubMed  CAS  Google Scholar 

  • Gray O, Chang S, Wolf E (1980) The stable transfer and functional expression of Staphylococcus aureus neomycin resistance markers from pK-545 and pUB110 to Streptomyces lactamdurans by interspecific cell fusion and by transformation. Abstr 80 th Annu Meeting Am Soc Microbiol, p 10

    Google Scholar 

  • Gregory KE, Huang JCC (1964a) Tyrosinase inheritance in Streptomyces scabies. I Genetic recombination. J Bacteriol 87: 1281–1286

    Google Scholar 

  • Gregory KE, Huang JCC (1964b) Tyrosinase inheritance in Streptomyces scabies. II Induction of tyrosinase deficiency by acridine dyes. J Bacteriol 87: 1287–1294

    Google Scholar 

  • Hayakawa T, Otake N, Yonehara H, Tanaka T, Sakaguchi K (1979 a) Isolation and characterisation of plasmids of Streptomyces. J Antibiot 32: 1348–1350

    Google Scholar 

  • Hayakawa T, Tanaka T, Sakaguchi K, Otake N, Yonehara H (1979 b) A linear plasmid-like DNA in Streptomyces sp producing lankacidin group antibiotics. J Gen Appl Microbiol 25: 255–260

    Google Scholar 

  • Higgens CE, Kastner RE (1971) Streptomyces clavuligerus sp. nov., a Beta-lactam antibiotic producer. Int J Syst Bacteriol 21: 326–331

    Article  Google Scholar 

  • Higgens CE, Hamill RL, Sands TH, Hoehn MM, Davis NE, Nagarajan R, Boeck LD (1974) The occurence of deactoxycephalosporin C in fungi and streptomycetes. J Antibiot 27: 298–300

    PubMed  CAS  Google Scholar 

  • Holt G, Edwards GFSTL, Macdonald KD (1976) The genetics of mutants impaired in the biosynthesis of penicillin. In: Macdonald KD (ed) Second international symposium on the genetics of industrial micro-organisms. Academic Press, London New York, pp 199–211

    Google Scholar 

  • Hopwood DA (1967) Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev 31: 373–403

    PubMed  CAS  Google Scholar 

  • Hopwood DA (1978) Extrachromosomally determined antibiotic production. Annu Rev Microbiol 32: 373–392

    Article  PubMed  CAS  Google Scholar 

  • Hopwood DA, Merrick MJ (1977) Genetics of antibiotic production. Bacteriol Rev 41: 595–635

    PubMed  CAS  Google Scholar 

  • Hopwood DA, Wright HM (1972) Transformation in Thermoactinomyces vulgaris. J Gen Microbiol 71: 383–398

    CAS  Google Scholar 

  • Hopwood DA, Wright HM (1973a) Transfer of a plasmid between Streptomyces species. J Gen Microbiol 77: 187–195

    Google Scholar 

  • Hopwood DA, Wright HM (1973b) A plasmid of Streptomyces coelicolor carrying a chromosomal locus and its interspecific transfer. J Gen Microbiol 79: 331–342

    PubMed  CAS  Google Scholar 

  • Hopwood DA, Wright HM (1976) Genetic studies on SCP I-prime strains of Streptomyces coelicolor A3(2). J Gen Microbiol 95: 107–120

    PubMed  CAS  Google Scholar 

  • Hopwood DA, Wright HM (1978) Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolor. Mol Gen Genet 162: 307–317

    Article  PubMed  CAS  Google Scholar 

  • Hopwood DA, Wright HM (1979) Factors affecting recombinant frequency in protoplast fusions of Streptomyces coelicolor. J Gen Microbiol 1 II: 137–143

    Google Scholar 

  • Hopwood DA, Sermonti G, Spada-Sermonti I (1963) Heterozygote clones in Streptomyces coelicolor. J Gen Microbiol 30: 249–260

    PubMed  CAS  Google Scholar 

  • Hopwood DA, Chater KF, Dowding DE, Vivian A (1973) Recent advances in Streptomyces coelicolor genetics. Bacteriol Rev 37: 371–405

    PubMed  CAS  Google Scholar 

  • Hopwood DA, Wright HM, Bibb MJ, Cohen SN (1977) Genetic recombination though protoplast fusion in Streptomyces. Nature 268: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi S, Uozumi I, Beppu T (1980) Cloning of Streptomyces DNA into E. coli. Absence of heterospecific gene expression of Streptomyces genes in E. coli. Agric Biol Chem 44: 367–382

    Google Scholar 

  • Hornemann U, Hopwood DA (1978) Isolation and characterisation of desepoxy-4,5-didehydro-methylenomycin A. A precursor of the antibiotic methylenomycin A in SCP I+ strains of Streptomyces coelicolor A3(2). Tetrahedron Lett 33: 2977–2978

    Article  Google Scholar 

  • Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley O, Miller TW et al. (1979) Thienamycin, a new beta-lactam antibiotic. I Discovery, taxonomy, isolation, and physical properties. J Antibiot 32: 1–12

    Google Scholar 

  • Kalakoutskii LV, Agre NA (1976) Comparative aspects of development and differentiation in Actinomycetes. Bacteriol Rev 40: 469–524

    PubMed  CAS  Google Scholar 

  • Kenig M, Reading C (1979) Holomycin and an antibiotic MM-19290 related to tunicamycin, metabolites of Streptomyces clavuligerus. J Antibiot 32: 549–554

    PubMed  CAS  Google Scholar 

  • Kirby R (1976) Genetic studies on Streptomyces coelicolor plasmid one. PhD Thesis, University of East Anglia, Norwich, England

    Google Scholar 

  • Kirby R (1978 a) Genetic mapping of Streptomyces clavuligerus. FEMS Microbiol Lett 3:177–180

    Google Scholar 

  • Kirby R (1978 b) An unstable genetic element affecting the production of the antibiotic holomycin by Streptomyces clavuligerus. FEMS Microbiol Lett 3:283–286

    Google Scholar 

  • Kirby R, Hopwood DA (1977) Genetic determination of methylenomycin synthesis by the SCP I plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol 98: 239–252

    PubMed  CAS  Google Scholar 

  • Kirby R, Lewis E (1981) Unstable genetic elements affecting streptomycin resistance in the streptomycin producing organisms Streptomyces griseus NCIB8506 and Streptomyces bikiniensis ISP5235. J Gen Microbiol 122: 351–355

    Google Scholar 

  • Kirby R, O’Reilly C (1979) Genetic instability in Streptomyces cattleya. Proceedings of the Society for General Microbiology 6: 172

    Google Scholar 

  • Kirby R, Wotton S (1979) Restriction studies on the SCP 2 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol 6: 321–324

    CAS  Google Scholar 

  • Kirby R, Wright LF, Hopwood DA (1975) Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor. Nature 254: 265–267

    Article  PubMed  CAS  Google Scholar 

  • Kirby R, Lewis E, Botha C (1982) A survey of Streptomyces species for covalently closed circular (ccc) DNA using a variety of methods. FEMS Microbiol Lett 13: 79–82

    Article  CAS  Google Scholar 

  • Kruegel H, Fiedler G, Noack D (1980) Transfection of protoplasts of Streptomyces lividans 66 with actinophage SH-10 DNA. Mol Gen Genet 117: 297–300

    Article  Google Scholar 

  • Lomovskaya ND, Voeykoya TA, Mkrtumian NM (1977) Construction and properties of hybrids obtained in interspecific crosses between Streptomyces coelicolor A3(2) and Streptomyces griseus Kr 15. J Gen Microbiol 98: 187–198

    PubMed  CAS  Google Scholar 

  • Matselyukh BP (1976) Structure and function of the Actinomyces olivaceus genome. In: Macdonald KD (ed) Second international symposium on the genetics of industrial micro-organisms. Academic Press, London New York, pp 553–563

    Google Scholar 

  • Merrick MJ (1975) Hybridisation and selection for increased penicillin titre in wild-type isolates of Aspergillus nidulans. J Gen Microbiol 91: 278–286

    Google Scholar 

  • Merrick MJ (1976) A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. J Gen Microbiol 96: 299–315

    PubMed  CAS  Google Scholar 

  • Nagarajan R (1972) Beta-lactam antibiotics from Streptomyces. In: Flynn EH (ed) Cephalopsporins and penicillins; chemistry and biology. Academic Press, New York, pp 636–661

    Google Scholar 

  • Nagarajan R, Boeck LD, Gorman M, Hamill RC, Higgins CE, Hoehn MM, Stark WM, Whitney JG (1971) Beta-lactam antibiotics from Streptomyces. J Am Chem Soc 93: 2308–2310

    Article  PubMed  CAS  Google Scholar 

  • Ochi K, Hitchcock JM, Katz E (1979) High-frequency fusion of Streptomyces parvulus or Streptomyces antibioticus protoplasts induced by polyethylene glycol. J Bacteriol 139: 984–992

    PubMed  CAS  Google Scholar 

  • Okamura K, Hirata S, Koki K, Hori K, Skibamoto N, Okamura Y, Okabe R et al. (1979) PS-5, a new beta-lactam antibiotic. I Taxonomy of the producing organism, isolation, and physio-chemical properties. J Antibiot 32: 262–271

    Google Scholar 

  • Okamura K, Hirata S, Okamura Y, Fukagawa Y, Shimauchi Y, Ishikura T, Lein J (1978) PS-5, a new beta-lactam antibiotic from Streptomyces. J Antibiot 31: 480–482

    PubMed  CAS  Google Scholar 

  • Okamura K, Sakamoto M, Fukagawa Y, Ishikura T (1979) PS-5, a new beta-lactam antibiotic. III Synergistic effects and inhibitory activity against a beta-lactamase. J Antibiot 32: 280–304

    Google Scholar 

  • Okanishi M, Ohta T, Umezawa H (1970) Possible control of formation of aerial mycelium and antibiotic production in Streptomyces by episomic factors. J Antibiot 23: 45–47

    PubMed  CAS  Google Scholar 

  • Okanishi M, Suzuki K, Umezawa H (1974) Formation and reversion of Streptomyces pro- toplasts: cultural conditions and morphological study. J Gen Microbiol 80: 389–400

    PubMed  CAS  Google Scholar 

  • Okanishi M, Umezawa H (1978) Plasmids involved in antibiotic production in Streptomycetes. Genetics of the Actinomycetales. Proceedings of the international colloquium at the Forschungsinstitut Borstel. Ed: Freerksen E, Târnok I, Thumin JH. Fischer, Stuttgart, pp 19–36

    Google Scholar 

  • Omura S, Ikeda H, Kita C (1979) The detection of a plasmid in Streptomyces ambofaciens KA-1028 and its possible involvement in spiramycin production. J Antibiot 32: 10581060

    Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607 Parag Y (1978) Genetic recombination in Streptomyces griseus. J Bacteriol 183: 1027–1031

    Google Scholar 

  • Polsinelli M, Beretta M (1966) Genetic recombination in crosses between Streptomyces aureofaciens and Streptomyces rimosus. J Bacteriol 91: 63–68

    PubMed  CAS  Google Scholar 

  • Pridham TG, Tresner HG (1974) The Streptomycetes. Bergey’s manual of determinative bacteriology 8th edition. Williams and Wilkins, Baltimore

    Google Scholar 

  • Ptashne M, Cohen SN (1974) Occurence of insertion sequences ( IS) regions on the plasmid deoxyribonucleic acid as direct and inverted nucleotide sequence duplications. J Bacteriol 122: 776–781

    Google Scholar 

  • Reading C, Cole M (1976) Clavulanic acid, a beta-lactamase inhibiting beta-lactam from Streptomyces clavuligerus. J Chem Soc Commun 19: 266–267

    Google Scholar 

  • Redshaw PA, McCann PA, Pentella MA, Pogell BM (1979) Simultaneous loss of multiple differentiated functions in aerial mycelium negative isolates of Streptomyces. J Bacteriol 137: 891–899

    PubMed  CAS  Google Scholar 

  • Rudd BAM, Hopwood DA (1978) Genetics of actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Abstr 3 rd int symp genet ind micro-organisms, Madison, no 19, p 10

    Google Scholar 

  • Rudd BAM, Hopwood DA (1979) Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J Gen Microbiol 114: 35–43

    PubMed  CAS  Google Scholar 

  • Schrempf H, Goebel W (1978) Plasmids in Streptomyces. Abst int symp genet ind microorganisms, Madison, no 80, p 40

    Google Scholar 

  • Schrempf H, Bujard H, Hopwood DA, Goebel W (1975) Isolation of covalently closed circular deoxyribonucleic acid from Streptomyces coelicolor A3(2). J Bacteriol 121: 416421

    Google Scholar 

  • Sermonti G, Petris A, Micheli M, Lanfaloni L (1977) A factor involved in chloramphenicol resistance in Streptomyces coelicolor A3(2): its transfer in the absence of the fertility factor. J Gen Microbiol 100: 347–353

    PubMed  CAS  Google Scholar 

  • Sermonti G, Petris A, Micheli M, Lanfaloni L (1978) Chloramphenicol resistance in Streptomyces coelicolor A3(2)–possible involvement of a transposable element. Mol Gen Genet 164: 99–103

    Article  PubMed  CAS  Google Scholar 

  • Sermonti G, Lanfaloni L, Micheli MR (1980) A jumping gene in Streptomyces coelicolor A3(2). Mol Gen Genet 177: 453–458

    Article  PubMed  CAS  Google Scholar 

  • Shaw PD, Piwowarski J (1977) Effect of ethidium bromide and acriflavine on streptomycin production by Streptomyces bikiniensis. J Antibiot 30: 404–408

    PubMed  CAS  Google Scholar 

  • Stapley EO, Jackson M, Hernandez S, Zimmerman SB, Currie SA, Mochales S, Mata JM, Woodruff HB, Hendlin D (1972) Cephamycins, a new family of beta-lactam antibiotics. I. Production by actinomycetes including Streptomyces lactamdurans sp. Antimicrob Agents Chemother 2: 122–131

    Google Scholar 

  • Stuttard C (1979) Transduction of auxotrophic matkers in a chloramphenicol producing strain of Streptomyces. J Gen Microbiol 110: 479–482

    PubMed  CAS  Google Scholar 

  • Suarez JE, Chater FF (1980) Polyethylene glycol-assisted transfection of Streptomyces protoplasts. J Bacteriol 142: 8–14

    PubMed  CAS  Google Scholar 

  • Toyama H, Okanishi M, Umezawa H (1979) Cleavage maps of the plasmids in Streptomyces kasugaensis. Jpn J Genet 54: 471

    Google Scholar 

  • Valu G, Szabo G (1980) Streptomycin sensitivity of ribosomes isolated from a streptomycin producing Streptomyces griseus. Acta Microbiol Acad Sci Hung 26: 207–212

    Google Scholar 

  • Vivian A (1971) Genetic control of fertility in Streptomyces coelicolor A3(2): plasmid involvement in the interconversion of OF and IF strains. J Gen Microbiol 69: 353–364

    Google Scholar 

  • Wildermuth JG (1970) Development and organisation of the aerial mycelium in Streptomyces coelicolor. J Gen Microbiol 60: 43–50

    PubMed  CAS  Google Scholar 

  • Wright LF, Hopwood DA (1976a) Identification of the antibiotic determined by t-guhe SCPI plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol 95: 96–106

    PubMed  CAS  Google Scholar 

  • Wright LF, Hopwood DA (1976b) Actinorhodin is a chromosomally determined antibiotic in Streptomyces coelicolor A3(2). J Gen Microbiol 96: 289–297

    PubMed  CAS  Google Scholar 

  • Yu-gu S, Ke-suing D, Min L, Ying-fang Z, Nai-quam Y (1978) Genetic evidence of the presence of plasmid in Streptomyces griseus and its relationship with the biosynthesis of streptomycin. Acta Microbiol Sin 18: 195–201

    Google Scholar 

  • Yagisawa M, Huang TSR, Davies J (1978) The possible role of plasmids in neomycin biosynthesis and modification. Abstr int symp genet ind microorganisms, Madison, no 73, p 37

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirby, R. (1983). Genetics of β-Lactam-Producing Actinomycetes. In: Demain, A.L., Solomon, N.A. (eds) Antibiotics. Handbook of Experimental Pharmacology, vol 67 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81966-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81966-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81968-1

  • Online ISBN: 978-3-642-81966-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics