Elastic Medium with Random Fields of Inhomogeneities

  • Isaak A. Kunin
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 44)

Abstract

In this chapter the method of the effective field is applied to solve problems for composites and cracked solids. Under the assumption of a random change of the effective field from one particle to another the formulae for the first and second moments of random stress-strain fields are presented.

Keywords

Anisotropy Attenuation Rubber Posite Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 7.1
    I.I. Gikhman, A.V. Skorokhod: Theory of Random Processes, Vol. 1, ( Nauka, Moscow 1971 ) [in Russian]Google Scholar
  2. 7.2
    T.D. Shermergor: Theory of Elastic Inhomogeneous Media ( Nauka, Moskow 1977 ) [in Russian]Google Scholar
  3. 7.3
    I.A. Chaban: Self-consistent field approach to calculation of effective parameters of microinhomogeneous media. Sov. Phys.-Acoust. 10, 298–304 (1964)MathSciNetGoogle Scholar
  4. 7.4
    E. Kröner: Bounds for effective elastic moduli of disordered materials. J. Mech. and Phys. Solids, 25, 137–155 (1977)CrossRefMATHADSGoogle Scholar
  5. 7.5
    I.1. Gikhman, A.V. Skorokhod: Theory of Random Processes, Vol. 2 ( Nauka, Moscow 1971 ) [in Russian]Google Scholar
  6. 7.6
    V.M. Levin: On the stress concentration in inclusions in composite materials. J. Appl. Math. and Mech. 41, 753–761 (1977)CrossRefADSGoogle Scholar
  7. 7.7
    A.V. Hershey: The elasticity of an isotropic aggregate of anisotropic cubic crystals. J. Appl. Mech. 21, 236 (1954)MATHGoogle Scholar
  8. 7.8
    G. Kneer: Über die Berechnung der Elastizitätmoduls vielkristaller Aggregate mit Textur. Phys. Stat. Sol. 9, 825–838 (1965)CrossRefADSGoogle Scholar
  9. 7.9
    E. Kröner: Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Phys. 151, 504 (1958)CrossRefGoogle Scholar
  10. 7.10
    P.R. Morris: Elastic constants of polycrystals. Int. J. Eng. Sci. 8, 49 (1970)CrossRefGoogle Scholar
  11. 7.11
    Z. Hashin, S. Shtrikman: On some variational principles in anisotropic and nonhomogeneous elasticity; J. Mech. Phys. Solids 10, 343 (1962)CrossRefADSMathSciNetGoogle Scholar
  12. 7.12
    S.K. Kanaun: Self-consistent field approximation for an elastic composite medium. J. Appl. Mech. Tech. Phys. 18, 274–282 (1977)CrossRefADSGoogle Scholar
  13. 7.13
    E.I. Grigoliuk, L.A. Fil’shtinskii: Perforated Plates and Shells ( Nauka, Moscow 1970 ) [in Russian]Google Scholar
  14. 7.14
    A.E. Andreikiv, V.V. Panasiuk, M.M. Stadnik: Fracture of prismatic bars with cracks. Problemy Prochnosti, No. 10. 10–16 (1972)Google Scholar
  15. 7.15
    B. Budjanski, R.J. O’Connel: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, (1976)Google Scholar
  16. 7.16
    A.S. Vavakin, R.L. Salganik: On effective characteristics of inhomogenous media with local inhomogeneities. Izv. Akad. Nauk SSSR, MTT No. 3 (1975)Google Scholar
  17. 7.17
    S.K. Kanaun, G.I. Iablokova: “Self-consistent field approximation in plane problem for systems of interacting cracks”, in Mekhanika Sterzhnevykh Sistem i Sploshnykh Sred, No. 9, ( Leningr. Inshenernostroitel’nyi Institut, Leningrad 1976 ) pp. 194–203Google Scholar
  18. 7.18
    L.A. Fil’shtinskii: Interaction of a doubly-periodic system of rectilinear cracks in an isotropic medium. J. Appl. Math. and Mech. 38,853–861 (19 74)Google Scholar
  19. 7.19
    P.C. Darts, G.C.M. Sih: “Stress analysis of cracks” in Fracture Toughness Testing and its Applications ( Am. Soc. for Testing and Materials, 1965 ) pp. 30–83Google Scholar
  20. 7.20
    V.V.Panasiuk, M. Savruk, A.P. Datsishin: Stress Distribution Around Cracks in Plates and Shells (Naukova Dumka, Kiev 1976 )Google Scholar
  21. 7.21
    G. Adomian: Linear random operator equations in mathematical physics. J. Math. Phys. 12, 1944 (1971)CrossRefMATHADSMathSciNetGoogle Scholar
  22. 7.22
    R.J. Elliott, J.A. Krumhansl, P.L. Leath: The theory and properties of randomly disordered crystals. Rev. Mod. Phys. 46, 465 (1974)CrossRefADSMathSciNetGoogle Scholar
  23. 7.23
    M. Hori: Statistical theory of effective electrical, thermal and magnetic properties of random heterogeneous materials. J. Math. Phys. 14, 514523; 1942–1948 (1973); 15, 2177–2185 (1974); 16, 352–364; 1772–1775 (1975); 18, 487–501 (1977)Google Scholar
  24. 7.24
    A.H. Nayfeh: Pertubation Methods ( Wiley, New York 1970 )Google Scholar
  25. 7.25
    V.M. Levin: On calculation of effective moduli of composites. Dokl. Akad. Nauk SSSR 220, No. 5 (1975)Google Scholar
  26. 7.26
    L.T. Walpole: On bounds for the overall elastic moduli of inhomoge- neous systems — I, II. J. Mech. Phys. Solids 14, 151 and 289 (1966)Google Scholar
  27. 7.27
    M. Kac: “Mathematical mechanisms of phase transitions” in Statistical Physics. Phase Transitions and Superfluidity, Vol. 1 ed. by M. Chretien, ( Gordon & Breach, New York 1968 ) pp. 241–305Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Isaak A. Kunin
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations