Elastic Medium with Random Fields of Inhomogeneities

  • Isaak A. Kunin
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 44)


In this chapter the method of the effective field is applied to solve problems for composites and cracked solids. Under the assumption of a random change of the effective field from one particle to another the formulae for the first and second moments of random stress-strain fields are presented.


Anisotropy Attenuation Rubber Posite Convolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    I.I. Gikhman, A.V. Skorokhod: Theory of Random Processes, Vol. 1, ( Nauka, Moscow 1971 ) [in Russian]Google Scholar
  2. 7.2
    T.D. Shermergor: Theory of Elastic Inhomogeneous Media ( Nauka, Moskow 1977 ) [in Russian]Google Scholar
  3. 7.3
    I.A. Chaban: Self-consistent field approach to calculation of effective parameters of microinhomogeneous media. Sov. Phys.-Acoust. 10, 298–304 (1964)MathSciNetGoogle Scholar
  4. 7.4
    E. Kröner: Bounds for effective elastic moduli of disordered materials. J. Mech. and Phys. Solids, 25, 137–155 (1977)CrossRefMATHADSGoogle Scholar
  5. 7.5
    I.1. Gikhman, A.V. Skorokhod: Theory of Random Processes, Vol. 2 ( Nauka, Moscow 1971 ) [in Russian]Google Scholar
  6. 7.6
    V.M. Levin: On the stress concentration in inclusions in composite materials. J. Appl. Math. and Mech. 41, 753–761 (1977)CrossRefADSGoogle Scholar
  7. 7.7
    A.V. Hershey: The elasticity of an isotropic aggregate of anisotropic cubic crystals. J. Appl. Mech. 21, 236 (1954)MATHGoogle Scholar
  8. 7.8
    G. Kneer: Über die Berechnung der Elastizitätmoduls vielkristaller Aggregate mit Textur. Phys. Stat. Sol. 9, 825–838 (1965)CrossRefADSGoogle Scholar
  9. 7.9
    E. Kröner: Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Phys. 151, 504 (1958)CrossRefGoogle Scholar
  10. 7.10
    P.R. Morris: Elastic constants of polycrystals. Int. J. Eng. Sci. 8, 49 (1970)CrossRefGoogle Scholar
  11. 7.11
    Z. Hashin, S. Shtrikman: On some variational principles in anisotropic and nonhomogeneous elasticity; J. Mech. Phys. Solids 10, 343 (1962)CrossRefADSMathSciNetGoogle Scholar
  12. 7.12
    S.K. Kanaun: Self-consistent field approximation for an elastic composite medium. J. Appl. Mech. Tech. Phys. 18, 274–282 (1977)CrossRefADSGoogle Scholar
  13. 7.13
    E.I. Grigoliuk, L.A. Fil’shtinskii: Perforated Plates and Shells ( Nauka, Moscow 1970 ) [in Russian]Google Scholar
  14. 7.14
    A.E. Andreikiv, V.V. Panasiuk, M.M. Stadnik: Fracture of prismatic bars with cracks. Problemy Prochnosti, No. 10. 10–16 (1972)Google Scholar
  15. 7.15
    B. Budjanski, R.J. O’Connel: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, (1976)Google Scholar
  16. 7.16
    A.S. Vavakin, R.L. Salganik: On effective characteristics of inhomogenous media with local inhomogeneities. Izv. Akad. Nauk SSSR, MTT No. 3 (1975)Google Scholar
  17. 7.17
    S.K. Kanaun, G.I. Iablokova: “Self-consistent field approximation in plane problem for systems of interacting cracks”, in Mekhanika Sterzhnevykh Sistem i Sploshnykh Sred, No. 9, ( Leningr. Inshenernostroitel’nyi Institut, Leningrad 1976 ) pp. 194–203Google Scholar
  18. 7.18
    L.A. Fil’shtinskii: Interaction of a doubly-periodic system of rectilinear cracks in an isotropic medium. J. Appl. Math. and Mech. 38,853–861 (19 74)Google Scholar
  19. 7.19
    P.C. Darts, G.C.M. Sih: “Stress analysis of cracks” in Fracture Toughness Testing and its Applications ( Am. Soc. for Testing and Materials, 1965 ) pp. 30–83Google Scholar
  20. 7.20
    V.V.Panasiuk, M. Savruk, A.P. Datsishin: Stress Distribution Around Cracks in Plates and Shells (Naukova Dumka, Kiev 1976 )Google Scholar
  21. 7.21
    G. Adomian: Linear random operator equations in mathematical physics. J. Math. Phys. 12, 1944 (1971)CrossRefMATHADSMathSciNetGoogle Scholar
  22. 7.22
    R.J. Elliott, J.A. Krumhansl, P.L. Leath: The theory and properties of randomly disordered crystals. Rev. Mod. Phys. 46, 465 (1974)CrossRefADSMathSciNetGoogle Scholar
  23. 7.23
    M. Hori: Statistical theory of effective electrical, thermal and magnetic properties of random heterogeneous materials. J. Math. Phys. 14, 514523; 1942–1948 (1973); 15, 2177–2185 (1974); 16, 352–364; 1772–1775 (1975); 18, 487–501 (1977)Google Scholar
  24. 7.24
    A.H. Nayfeh: Pertubation Methods ( Wiley, New York 1970 )Google Scholar
  25. 7.25
    V.M. Levin: On calculation of effective moduli of composites. Dokl. Akad. Nauk SSSR 220, No. 5 (1975)Google Scholar
  26. 7.26
    L.T. Walpole: On bounds for the overall elastic moduli of inhomoge- neous systems — I, II. J. Mech. Phys. Solids 14, 151 and 289 (1966)Google Scholar
  27. 7.27
    M. Kac: “Mathematical mechanisms of phase transitions” in Statistical Physics. Phase Transitions and Superfluidity, Vol. 1 ed. by M. Chretien, ( Gordon & Breach, New York 1968 ) pp. 241–305Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Isaak A. Kunin
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations