Local Defects

  • Isaak A. Kunin
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 44)


In this chapter, we consider local inhomogeneities as defects in a homogeneous medium. We use systematically the Green’s function technique which seems to be most adequate to the problem.


Anisotropy Hexa Hexagonal Dium Verse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    I.M. Lifshits, L.N. Rosentsveig: Green’s tensor for anisotropic unbounded elastic medium. Zh. Exsp. Teor. Fiz. 17, 783–791 (1947)Google Scholar
  2. 4.2
    I.M. Gel’fand, G.E. Shilov: Generalized Functions ( Academic Press, New York 1964 )MATHGoogle Scholar
  3. 4.3
    G.I. Eskin: Boundary-Value Problems for Elliptic Pseudo-Differential Equations (Math. Soc. of USA, N.Y. 1981 )Google Scholar
  4. 4.4
    J.R. Willis: The stress field around an elliptical crack in an anisotropie elastic medium. Int. J. Eng. Sci. 6, 253–263 (1968)CrossRefMATHGoogle Scholar
  5. 4.5
    J.D. Eshelby: “Elastic inclusions and inhomogeneities”, in Prog. Solid Mech., Vol. 2, ed. by I.N. Sneddon, R. Hill (1961) pp. 88–140Google Scholar
  6. 4.6
    J.D. Eshelby: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. A252, 561–569 (1959)CrossRefMATHMathSciNetGoogle Scholar
  7. 4.7
    J.D. Eshelby: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A241, 376–396 (1957)CrossRefMATHMathSciNetGoogle Scholar
  8. 4.8
    I.M. Lifshifts, L.V. Tanatarov: On the elastic interaction of impurity atoms in crystal. J. Phys. Metals Metallography 12, 331–338 (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Isaak A. Kunin
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations