Skip to main content

Role of Extent and Persistence of DNA Modifications in Chemical Carcinogenesis by Aromatic Amines

  • Chapter
Modified Nucleosides and Cancer

Abstract

Numerous known and suspected human carcinogens belong to the chemical class of aromatic amines, among them many compounds used extensively in industrial processes and in the manufacture of drugs, pesticides, and plastics. Industrial bladder cancer has been attributed primarily to exposure to aromatic amines; this group of compounds has therefore received considerable attention. Particular problems are the wide variety of species and the tissue specificity elicited by these compounds in experimental systems, and much effort has been devoted in the past to identifying the common properties of aromatic amines and explaining specific effects.

Work carried out in the author’s laboratory was supported by the Deutsche Forschungsgemeinschaft

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AAF:

2-N-acetylaminofluorene

AF:

2-aminofluorene

trans-AAS:

trans-4-N-acetylaminostilbene

trans-DAS:

trans-4-N-acetylaminostilbene

DDT:

1,1,1,-trichloro-2,2-bis-(p-chloro-phenyl)-ethane

TPA:

phorbol-12-tetradecanoyl-13-acetyl-diester

Ade-N6 :

adenine-N 6 derivative

Gua-C-8:

guanine-C-8 derivative

Gua-N2 :

guanine-N2 derivative

Gua-O6 :

guanine-O6 derivative

References

  • Andrews LS, Fysh JM, Hinson JA, Gilette JR (1979) Ascorbic acid inhibits covalent binding of enzymatically generated 2-acetyl-aminofluorene-N-sulfate to DNA under conditions in which it increases mutagenesis in Salmonella TA-1538. Life Sci 24: 59–64

    Article  PubMed  CAS  Google Scholar 

  • Arcos JC, Argus MF (1974) Chemical induction of cancer, vol IIB. Academic Press, New York London, pp 176–177

    Google Scholar 

  • Åström A, DePierre JW (1981) Characterization of the induction of drug metabolizing enzymes by 2-acetylaminofluorene. Biochim Biophys Acta 673: 225–233

    PubMed  Google Scholar 

  • Baur H, Neumann H-G (1980) Correlation of nucleic acid binding by metabolites of trans-4-aminostilbene derivatives with tissue specific acute toxicity and carcinogenicity in rats. Carcinogenesis 1: 877–885

    Article  PubMed  CAS  Google Scholar 

  • Beland FA, Allaben WT, Evans FE (1980a) Acyltransferase-mediated binding of N-hy-droxy-arylamides to nucleic acids. Cancer Res 40:834–840

    PubMed  CAS  Google Scholar 

  • Beland FA, Tullis DL, Kadlubar FF, Straub KM, Evans FE (1980b) Characterization of DNA adducts of the carcinogen N-metyhl-4-aminoazobenzene in vitro and in vivo. Chem Biol Interact 31:1–17

    Article  PubMed  CAS  Google Scholar 

  • Brouns RME, VanDoorn R, Bos RP, Mulleners LJS, Henderson PT (1981) Metabolic activation of 2-amlnofluorene by isolated rat liver cells through different pathways leading to hepatocellular DNA-repair and bacterial mutagenesis. Toxicology 19:67–75

    Article  PubMed  CAS  Google Scholar 

  • Columbano A, Rajalakshmis S, Sarma R (1981) Requirement of cell proliferation for the initiation of liver carcinogenesis as assayed by three different procedures. Cancer Res 41: 2079–2083

    PubMed  CAS  Google Scholar 

  • Diamond L, O’Brien TG (1980) Tumor promoters and the mechanism of tumor promotion. Adv Cancer Res 32: 1–74

    Article  PubMed  CAS  Google Scholar 

  • Gaugler BJM, Neumann H-G (1979) The binding of metabolites formed from aminostilbene derivatives to nucleic acids in the liver of rats. Chem Biol Interact 24: 355–372

    Article  PubMed  CAS  Google Scholar 

  • Glatt HR, Oesch F, Neumann H-G (1980) Factors responsible for the metabolic formation and inactivation of bacterial mutagens from trans-4-acetylaminostilbene. Mutat Res 73:237–250

    Article  PubMed  CAS  Google Scholar 

  • Grunberger D, Weinstein IB (1979) Conformational changes in nucleic acids modified by chemical carcinogens. In: Grover PhL (ed) Chemical carcinogens and DNA. CRC Press, Boca Raton, Fl, pp 60–93

    Google Scholar 

  • Haddow A, Harris RJC, Kon GAR, Roe EMF (1948) The growth-inhibitory and carcinogenic properties of 4-ammostilbene derivatives. Philos Trans R Soc Lond Ser A 241: 147–195

    Article  Google Scholar 

  • Kitagawa T, Pitot HC, Miller EC, Miller JA (1979) Promotion by dietary phenobarbital of hepatocarcinogenesis by 2-methyl-N,N-dimethyl-4-aminoazobenzene in the rat. Cancer Res 39:112–115

    PubMed  CAS  Google Scholar 

  • Kriek E (1969/1970) On the mechanism of action of carcinogenic aromatic amines I. Binding of 2-acetylaminofluorene and N-hydroxy-2-acetylaminofluorene to rat liver nucleic acids in vivo. Chem Biol Interact 1:3–17

    Article  PubMed  CAS  Google Scholar 

  • Kriek E (1971) On the mechanism of action of carcinogenic aromatic amines II. Binding of N-hydroxy-N-acetyl-4-aminobiphenyl to rat liver nucleic acids in vivo. Chem Biol Interact 3:19–28

    Article  PubMed  CAS  Google Scholar 

  • Kriek E (1980) Modification of DNA by carcinogenic aromatic amines in vivo and in vitro with possible promutagenic consequences. In: Pullman B, Ts’o POP, Gelboin H (eds) Carcinogenesis: Fundamental mechanisms and environmental effects. Reidel, pp 103–111

    Chapter  Google Scholar 

  • Marquardt P (1979) Die akute Toxizität des carcinogenen aromatischen Amins trans-4-Di-methylaminostilben bei der Ratte. Dissertation, Universität Würzburg

    Google Scholar 

  • Marquardt P, Neumann H-G, Romen W (to be published) Tissue specific, acute toxic effects of the carcinogen trans-4-dimethylaminostilbene. J Environ Pathol Toxicol

    Google Scholar 

  • Miller JA, Miller EC (1969) The metabolic activation of carcinogenic aromatic amines and amides. Prog Exp Tumor Res 11:273–301

    PubMed  CAS  Google Scholar 

  • Neumann H-G (1973) The metabolism of repeatedly administered trans-4-dimethylaminostil-bene and 4-dimethylaminobibenzyl. Z Krebsforsch 79: 60–70

    Article  CAS  Google Scholar 

  • Neumann H-G (1981) On the significance of metabolic activation and binding to nucleic acids of aminostilbene derivatives in vivo. J Natl Cancer Inst Monographs 58: 165–171

    CAS  Google Scholar 

  • Peraino C, Fry RJM, Staffeldt E, Christopher JP (1975) Comparative enhancing effects of phenobarbital, amobarbital, diphenylhydantoin, and dichlorodiphenyltrichloroethane on 2-acetylaminofluorene-induced hepatic tumorigenesis in the rat. Cancer Res 35: 2884–2890

    PubMed  CAS  Google Scholar 

  • Peraino C, Fry RJM, Staffeldt E, Christopher JP (1977) Enhancing effects of phenobarbitone and butylated hydroxytoluene on 2-acetylaminofluorene-induced hepatic tumorigenesis in the rat. Food Cosmet Toxicol 15: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Peraino C, Staffeldt E, Hanzen DA, Lombard LS, Stevens FI, Fry RJM (1980) Effects of varying the dietary concentration of phenobarbital on its enhancement of 2-acetylaminofluorene-induced hepatic tumorigenesis. Cancer Res 40: 3268–3273

    PubMed  CAS  Google Scholar 

  • Pfohl-Leszkowicz A, Salas C, Fuchs RPP, Dirheimer G (1981) Mechanism of inhibition of enzymatic deoxyribonucleic acid methylation by 2-(acetylamino)-fluorene bound to deoxyribonucleic acid. Biochemistry 20:3020–3024

    Article  PubMed  CAS  Google Scholar 

  • Salas CE, Pfohl-Leszkowicz A, Lang MC, Dirheimer G (1979) Effect of modification by N-acetoxy-N-2-acevtylaminofluorene on the level of DNA methylation. Nature 278: 71–72

    Article  PubMed  CAS  Google Scholar 

  • Schut HAJ, Wirth PJ, Thorgeirsson SS (1978) Mutagenic activation of N-hydroxy-2-acetyl-aminofluorene in the Salmonella test system: the role of deacetylation by liver and kidney fractions from mouse and rat. Mol Pharmacol 14:682–692

    PubMed  CAS  Google Scholar 

  • Scribner JD, Koponen G (1979) Binding of the carcinogen 2-acetamidophenanthrene to rat liver nucleic acids: lack of correlation with carcinogenic activity, and failure of the hydroxamic acid ester model for in vivo activation. Chem Biol Interact 15: 201–209

    Article  Google Scholar 

  • Scribner JD, Slaga TJ (1975) Brief comm: Tumor initiation by acyloxy derivatives of piperidine and N-arylacetamides. J Natl Cancer Inst 54:491–493

    PubMed  CAS  Google Scholar 

  • Scribner JD, Miller EC, Miller JA (1970) Nucleophilic substitution on carcinogenic N-acetoxy-N-arylacetamides. Cancer Res 30:1570–1579

    PubMed  CAS  Google Scholar 

  • Scribner JD, Fist SR, Scribner NK (1979) Mechanisms of action of carcinogenic aromatic amines: an investigation using mutagenesis in bacteria. Chem Biol Interact 26: 11–25

    Article  PubMed  CAS  Google Scholar 

  • Shirai T, Lee M-S, Wang CY, King CM (1981) Effects of partial hepatectomy and dietary phenobarbital on liver and mammary tumorigenesis by two N-hydroxy-N-acylaminobiphenyls in female CD rats. Cancer Res 41: 2450–2456

    PubMed  CAS  Google Scholar 

  • Stout DL, Becker FF (1978) Alteration of the ability of liver microsomes to activate N-2-fluorenylacetamide to a mutagen of Salmonella typhimurium during hepatocarcinogen-esis. Cancer Res 38:2274–2278

    PubMed  CAS  Google Scholar 

  • Stout DL, Babtist JN, Matney TS, Shaw CR (1976) N-hydroxy-2-aminofluorene: the principal mutagen produced from N-hydroxy-2-acetylaminofluorene by a mammalian supernatant enzyme preparation. Cancer Lett 1: 269–274

    Article  PubMed  CAS  Google Scholar 

  • Thorgeirsson SS, Sakai S, Wirth PJ (1980) Effect of ascorbic acid on in vitro mutagenicity and in vivo covalent binding of N-hydroxy-2-acetylaminofluorene in the rat. Mutation Res 70:395–398

    Article  PubMed  CAS  Google Scholar 

  • Weeks CE, Allaben WT, Louie SC, Lazear EJ (1978) Role of arylhydroxamic acid acyltransferase in the mutagenicity of N-2-fluorenylacetamide in Salmonella typhimurium. Cancer Res 38:613–618

    PubMed  CAS  Google Scholar 

  • Weeks CE, Allaben WT, Tresp NM, Louie SC, Lazear EJ, King CM (1980) Effects of structure of N-acyl-N-2-fluorenylhydroxylamines on arylhydroxamic acid acyltransferase, sulf©transferase, and deacylase activities, and on mutations in Salmonella typhimurium TA 1538. Cancer Res 40: 1204–1211

    PubMed  CAS  Google Scholar 

  • Wirth PJ, Thorgeirsson SS (1981) Mechanism of N-hydroxy-2-acetylaminofluorene mutagenicity in the Salmonella test system. Role of N-O acyltransferase and sulfotransferase from rat liver. Mol Pharmacol 19:337–344

    PubMed  CAS  Google Scholar 

  • Ying TS, Sarma DSR, Farber E (1981) Role of acute hepatic necrosis in the induction of early steps in liver carcinogenesis by diethylnitrosamine. Cancer Res 41: 2096–2102

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin • Heidelberg

About this chapter

Cite this chapter

Neumann, HG. (1983). Role of Extent and Persistence of DNA Modifications in Chemical Carcinogenesis by Aromatic Amines. In: Nass, G. (eds) Modified Nucleosides and Cancer. Recent Results in Cancer Research/Fortschritte der Krebsforschung/Progrès dans les recherches sur Ie cancer, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81947-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81947-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81949-0

  • Online ISBN: 978-3-642-81947-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics