Skip to main content

Slender Wings with Leading Edge Vortex-Separation

  • Chapter
Recent Contributions to Fluid Mechanics

Summary

The demands of high speed performance and maneuverability on modern transport- and fighter-aircraft require slender wings, whose leading edge vortex flows result in increased lift at high angle-of-attack. Beginning with the experimental and theoretical development and the history of application the article will discuss the application of panel- and vortex-lattice-methods and the latest employment of an Euler-code to predict the behaviour of the wing-vortex-system. Additionally the vortex-breakdown-phenomenon will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schairer, Evolution of Modem Air Transport Wings, AIAA 80–3037

    Google Scholar 

  2. Holder, Convair F-106, Aero Series Aero Pub. 1977

    Google Scholar 

  3. Robinson, The B-58 Hustler, Aero Pub. Com. Inc. 1967

    Google Scholar 

  4. (Mac) Blair, Evolution of the F-86, AIAA 80–3039

    Google Scholar 

  5. Poisson-Quinton, Slender Wings for Civil and Military Aircraft, Jour. of Tech. Vol 16, 1978

    Google Scholar 

  6. Küchemann, The Aerodynamic Design of Aircraft, Pergamon Press 1978

    Google Scholar 

  7. Legendre, Ecoulement au voisinage de la pointe avant d’une aile à forte flèche aux incidences moyennes, Rech. Aero. 1952

    Google Scholar 

  8. Jones, Properties of L.A.R. Pointed Wings at Speeds Below and Above the Speed of Sound, NACA-Rept. No. 835 1946

    Google Scholar 

  9. Adams J, Leading Edge Separation from Delta Wings at Supersonic Speeds, J. Aeron. Si. 20, 1953

    Google Scholar 

  10. Edwards, Leading-Edge Separation from Delta Wings, J. Aeron. Si 21 1954

    Google Scholar 

  11. Brown & Michael, Effect of Leading-Edge Separation on the Lift of a Delta Wing, NACA TN 3430 1955

    Google Scholar 

  12. Rech & Leyman, A Case Study by Aerospatiale and British Aerospace on the Concorde, AIAA Prof. Study

    Google Scholar 

  13. Werlé, Flow Visualisation Techniques for the Study of High Incidence Aerodynamics, AGARD Lec. No 121 1982

    Google Scholar 

  14. Hummel, Zur Umströmung scharfkantiger schlanker Deltaflügel bei großen Anstellwinkeln, Z. Flugw. 1967

    Google Scholar 

  15. Hummel, Untersuchungen über das Aufplatzen der Wirbel an schlanken Deltaflügeln, Z. Flugw. 1965

    Google Scholar 

  16. Rolls, Koenig & Drinkwater, Flight Investigation of the Aerodynamic Properties of an Ogee Wing, NASA TN D-3071 1965

    Google Scholar 

  17. Hummel, Private Communication

    Google Scholar 

  18. Stephan M. Hitzel, Vortex Breakdown of Leading-Edge-Vortices on Slender Sharp-Edged Wings. Some Ideas on the Physical Explanations and Theories, Dornier Aktenvermerk BF 30–1926/81 1981

    Google Scholar 

  19. Ludwieg, Vortex Breakdown, DFVLR 70–40

    Google Scholar 

  20. Rayleigh, On the Stability or Instability, of Certain Fluid Motions Scientific Papers Proc. Roy. Soc. London 1880

    Google Scholar 

  21. Taylor, Stability of a Viscous Liquid contained between Two Rotating Cylinders, Phil. Trans. Roy. Soc. London 1923

    Google Scholar 

  22. Benjamin, Theory of the Vortex Breakdown Phenomenon, J. Fluid Mechanics 14. 1962

    Google Scholar 

  23. Hall, A new Approach to Vortex Breakdown, Stanford University Press. 1967

    Google Scholar 

  24. Polhamus, A Concept of the Vortex Lift of Sharp-Edged Delta Wings, Based on a Leading-Edge Suction Analogy. NASA TN D-3767, 1966

    Google Scholar 

  25. Smith, Improved Calculations of Leading-Edge Separation from Slender Delta Wings. RAE Technical Report, 1966

    Google Scholar 

  26. Hummel, Redeker, Experimentelle Bestimmung der gebundenen Wirbellinien sowie des Strömungsverlaufs in der Umgebung der Hinterkante eines schlanken Deltaflügels, Sonderdruck 1971

    Google Scholar 

  27. Lucchi, Ein Panelverfahren höherer Ordnung für kompres-sible Unterschallströmungen. Dornier FB 78/13B

    Google Scholar 

  28. Johnson, Ehlers, and Rubbert, “A Higher Order Panel Method for General Analysis and Design Applications in Subsonic Flows”, Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, Enschede, 1976

    Google Scholar 

  29. Hitzel, Wagner, Berechnung der 3-dimensionalen Strömung am Flügel mit Vorderkantenablösung Teil 1 Panelverfahren höherer Ordnung, Dornier-Bericht 80/18 B

    Google Scholar 

  30. Johnson, Lu, Tinoco, Epton , An Improved Panel Method for the Solution of Three-Dimensional Leading-Edge Vortex Flows, NASA-CR-3278, July 1980

    Google Scholar 

  31. Wagner, Vereinfachte Wirbelmodelle für schlanke Tragflächen mit Vorderkantenablösung, ZFW Band 4, 1980

    Google Scholar 

  32. Lämmlein, Untersuchung der Vorderkantenablösung an schlanken Flügeln für den Fall konischer Strömung mit Hilfe des Strömungsmodells nach Smith. Dornier AKV BF 30–2205/82

    Google Scholar 

  33. Lucchi, Dornier Vortex-Lattice-Program VORLAT 1977

    Google Scholar 

  34. Hitzel, Berechnung der dreidimensionalen Strömung um Flügel mit Vorderkantenablösung II, Vereinfachte Verfahren, Euler-Code, Wirbelplatzen- Dornier Bericht 82 BF/63

    Google Scholar 

  35. Hitzel, Application of the Dornier Vortex-Lattice Method for the Evaluation of the Vortex-Lift-Coefficients according to the Polhamus Suction Analogy, Dornier AK BF 30–1921/81

    Google Scholar 

  36. Schmidt, and Jameson, Euler Solutions as Limit of Infinite Re-Number for Separated Flows and Flows with Vortices, Paper given at 8th Inter. Conf. on Num. Meth. in Fl. Dyn., Aachen 1982

    Google Scholar 

  37. Euler-code Dornier-FLO57, 1982

    Google Scholar 

  38. Brennenstuhl, Hummel, Untersuchungen über die Wirbelbildung an Flügeln mit geknickten Vorderkanten, ZFW Band 5, 1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hitzel, S.M. (1982). Slender Wings with Leading Edge Vortex-Separation. In: Haase, W. (eds) Recent Contributions to Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81932-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81932-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81934-6

  • Online ISBN: 978-3-642-81932-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics