Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 64))

Abstract

Several bacteriologic and biochemical investigations have been done to evaluate the effectiveness and mode of action of the drug combination, Septrin, Eusaprim, and Bactrim, consisting of trimethoprim, 2,4-diamino-5-(3′,4′,5′-trimethoxybenzyl)pyrimidine (TMP) and a sulfonamide, sulfamethoxazole (SMX). Many of these studies have been concerned with the mode of action, sensitivity testing procedures, or the development of resistance (Hitchings and Burchall 1965; Bushby and Barnett 1967; Böhni 1969; Tiesler 1970). A potentiating effect of TMP on sulfonamides (or vice versa) has been stated to occur (Bushby and Hitchings 1968; Fowle 1970; Bushby 1970; Then and Angehrn 1973; Then 1977). This has been said to be the consequence of the fact that the sites of action of the inhibitors are two different steps in the same biosynthetic pathway (Hitchings and Burchall 1965). In addition, decrease in the rate of development of resistance has been claimed when the bacterial strain is initially sensitive to both antibacterials (Bushby and Barnett 1967). A review article has summarized these studies as well as the pharmacologic and clinical investigations of the antibacterial combination (Garrod 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker BR, Bang-Thong H (1964) Differential inhibition of dihydrofolic reductase from different species. J Pharm Sci 53: 1137–1138

    Article  PubMed  CAS  Google Scholar 

  • Bock L, Miller GH, Schaper K-J, Seydel JK (1974) Sulfonamide structure-activity relationship in a cell-free system. II. Proof for the formation of a sulfonamide containing folate analogue. J Med Chem 17: 23–28

    Article  PubMed  CAS  Google Scholar 

  • Böhni E (1969) Vergleichende bakteriologische Untersuchungen mit der Kombination Trimethoprim/Sulfamethoxazol in vitro and in vivo. Chemotherapy [Suppl] 14: 1

    Google Scholar 

  • Böhni E (1976) Bacteriostatic and bactericidal activity of two trimethoprim-sulfonamide combinations. Chemotherapy 22: 262–273

    Article  PubMed  Google Scholar 

  • Brown GM (1962) The biosynthesis by sulphonamides. J Biol Chem 237: 536–540

    PubMed  CAS  Google Scholar 

  • Burchall JJ (1969) Comparative studies of dihydrofolate reductase. Postgrad Med J [Suppl] 45: 29–32

    CAS  Google Scholar 

  • Burchall JJ (1977) Synergisms between trimethoprim and sulfamethoxazole. Science 197: 1300–1301

    Article  CAS  Google Scholar 

  • Bushby SRM (1970) Trimethoprim and sulphonamides. Laboratory studies. S Afr Med J [Aug Suppl] 3–10

    Google Scholar 

  • Bushby SRM, Barnett M (1967) Trimethoprim-sulphonamides - in vitro sensitivity of 384 strains of bacteria. In: 5th Int Congr Chemother. Abstracta, Part 1, Verlag der Wiener Medizinischen Akademie, Wien

    Google Scholar 

  • Bushby SRM, Hitchings GH (1968) Trimethoprim, a sulphonamide potentiator. Br J Pharmacol Chemother 33: 72–90

    PubMed  CAS  Google Scholar 

  • Dornbusch K (1971) Regression line analysis of the synergistic effect for the combination of TMP/sulphamethoxazole. Chemotherapy 16: 229–238

    Article  PubMed  CAS  Google Scholar 

  • Ferone R (1973) The enzymatic synthesis of dihydropteroate and dihydrofolate by plasmodium berghei. J Protozool 20: 459–464

    PubMed  CAS  Google Scholar 

  • Fowle ASE (1970) National use of trimethoprim and sulphamethoxazole for one year–problems and solutions. S Afr Med J [Aug Suppl] 15–20

    Google Scholar 

  • Garrett ER (1958) Classification and evaluation of combined antibiotic activity. Antibiot Chemother 8: 8–20

    CAS  Google Scholar 

  • Garrett ER (1966) The use of microbial kinetics in the quantification of antibiotic action. Arzneim Forsch 16: 1364–1369

    CAS  Google Scholar 

  • Garrett ER (1971) Drug action and assay by microbial kinetics. Drug Res 15: 271–353

    CAS  Google Scholar 

  • Garrett ER, Brown MRW (1963) The action of tetracycline and chloramphenicol alone and in admixture on the growth of E. coli. J Pharm Pharmacol [Suppl] 15:185 T-191 T

    Google Scholar 

  • Garrett ER, Miller GH (1965) Kinetics and mechanism of action of antibiotics on microorganisms. III. Inhibitory action of tetracycline and chloramphenicol on Escherichia coli established by total and viable counts. J Pharm Sci 54: 427–431

    Article  PubMed  CAS  Google Scholar 

  • Garrett ER, Wright OK (1967) Kinetics and mechanism of action of drugs on microorganisms. VII. Quantitative adherence of sulfonamide action on microbial growth to a receptor-site model. J Pharm Sci 56: 1576–1585

    Google Scholar 

  • Garrod LP (1971) Evaluations on new drugs. Trimethoprim-sulphamethoxazole. Drugs 1: 8–53

    Article  Google Scholar 

  • Greenwood D, O’Grady F (1976) Activity and interaction of trimethoprim and sulphamethoxazole against Escherichia coli. J Clin Pathol 29: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Harvey RJ (1978) Interaction of two inhibitors which act on different enzymes of a metabolic pathway. J Theor Biol 74: 411–437

    Article  PubMed  CAS  Google Scholar 

  • Hirsch J (1943) Die „parasitropen“ Eigenschaften der Sulfanilamide. Schweiz Med Wochenschr 73: 1470–1477

    Google Scholar 

  • Hitchings GH (1961) A biochemical approach to chemotherapy. Trans NY Acad Sci 23: 700–708

    CAS  Google Scholar 

  • Hitchings GH (1969) Species differences among dihydrofolate reductases as a basis for chemotherapy. Postgrad Med J [Suppl] 45: 7–10

    CAS  Google Scholar 

  • Hitchings GH, Burchall JJ (1965) Inhibition of folate biosynthesis and function as a basis for chemotherapy. Adv Enzymol 27: 417–468

    PubMed  CAS  Google Scholar 

  • Hitchings GH, Bushby SRM (1961) 5-Benzyl-2,4-diaminopyrimidines, a new class of systematic antibacterial agents. 5th Int Congr Biochem Abstr. Pergamon Press Ltd, Oxford, p 165

    Google Scholar 

  • Hitchings GH, Elion GB, Vanderwerff H, Falco EA (1948) Pyrimidine derivatives as antagonists of pteroylglutamic acid. J Biol Chem 174: 765–766

    PubMed  CAS  Google Scholar 

  • Jaenicke L, Chan PC (1960) Die Biosynthese der Folsäure. Angew Chem 72: 752–753

    Article  CAS  Google Scholar 

  • Jawetz E, Gunnison JB (1953) Antibiotic synergism and antagonism. An assessment of the problem. Pharmacol Rev 5: 175–192

    Google Scholar 

  • Jawetz E, Gunnison JB, Bruff JA, Coleman VR (1952) Studies of antibiotic synergism and antagonism. Synergism among seven antibiotics against various bacteria in vitro. J Bacteriol 64: 29

    Google Scholar 

  • Kass E (1976) Design and achievements in chemotherapy. Scientific Medical Publishing Co, Library of Congress 76–13370, Washington

    Google Scholar 

  • Knothe H (1975) The antibacterial efficacy of two trimethoprim-sulphonamide combinations. Chemotherapy 22: 62–69

    Article  Google Scholar 

  • Kohn HI, Harris JS (1941) On the mode of action of sulphonamides. I. Action on E. coli. J Pharmacol Exp Ther 73: 343–361

    CAS  Google Scholar 

  • Kuhne J, Kohlmann FW, Seydel JK, Wempe E (1976) Pharmakokinetik der Kombination Sulfamoxol/Trimethoprim (CN 3123) bei Tier und Mensch. Arzneim Forsch 26: 561–657

    Google Scholar 

  • Matthews DA, Alden RA, Bolin JT et al. (1978) Dihydrofolate reductase from Lactobacillus casei. J Biol Chem 253: 6946

    PubMed  CAS  Google Scholar 

  • Miller GH, Doukas PH, Seydel JK (1972) Sulfonamide structure-activity relationships in a cell-free system. Correlation of inhibition of folgte synthesis with antibacterial activity and physicochemical parameters. J Med Chem 15: 700–706

    Google Scholar 

  • Mitsuda H, Suzuki Y (1969) Enzymatic pyrophosphorylation of 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine by cell-free extracts of Escherichia coli. Biochem Biophys Res Commun 36: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Nolte H (1973) Beispiel für die Untersuchung eines chemotherapeutischen Kombinationspräparates. Arzneim Forsch 23: 1654–1657

    CAS  Google Scholar 

  • Ortiz PJ, Hotchkiss RD (1966) The enzymatic synthesis of dhydrofolate and dihydropteroate in cell-free preparations from wild-type and sulfonamide-resistant pneumococcus. Biochemistry 5: 67–74

    Article  PubMed  CAS  Google Scholar 

  • Poe M (1976) Antibacterial synergism: a proposal for chemotherapeutic potentiation between trimethoprim and sulfamethoxazole. Science 194: 533–535

    Article  PubMed  CAS  Google Scholar 

  • Rogers EF, Clark RL, Becker HJ et al. (1964) Antiparasitic drugs. V. Anticoccidial activity of 4-amino-2-ethoxybenzoic acid and related compounds (29616). Proc Soc Exp Biol Med 117: 488–492

    PubMed  CAS  Google Scholar 

  • Roth B, Falco EA, Hitchings GH (1962) 5-benzy1–2,4-diaminopyrimidines.as antibacterial agents. I. Synthesis and antibacterial activity in vitro. J Med Pharm Chem 5: 1103–1123

    Google Scholar 

  • Seydel JK (1975) Physicochemical factors in drug-receptor interactions demonstrated on the example of the sulfanilamide. Top Infect Dis 1: 25–43

    Google Scholar 

  • Seydel JK, Miller GH (1973) Quantification of the antibacterial action of trimethoprim (TMP) alone and in combination with sulphonamides (SA) by bacterial growth kinetics (E. coli). In: Bernstein LS, Salter AJ (eds) Trimethoprim/sulphamethoxazole in bacterial infections. Churchill Livingstone, Edinburgh, pp 17–29

    Google Scholar 

  • Seydel JK, Schaper K-J (1978) Bakterienwachstumskinetik, ein Modell zur Bestimmung thermodynamisch definierter Aktivitätsparameter sowie zur Differenzierung von synergistischen, antagonistischen oder additiven Effekten von Chemotherapeutica. In: Franke R (ed) Symposium über Beziehungen zwischen chemischer Struktur und biologischer Wirkung — Quantitative Ansätze. Akademie-Verlag, Berlin, pp 373–386

    Google Scholar 

  • Seydel JK, Schaper K-J (1980) Quantitative structure-activity relationships as applied to enzyme inhibitors. In: Sandler M (ed) Enzyme inhibitors as drugs. Macmillan, London, pp 53–71

    Google Scholar 

  • Seydel JK, Wempe E (1975) Kinetics and mechanism of action of “folate synthesis inhibitors,” alone or in combination, on Escherichia coli. III. Pyrimethamine, trimethoprim and sulfamethoxazole. Chemotherapy 21: 131–145

    Google Scholar 

  • Seydel JK, Wempe E (1977) Untersuchungen zum synergistischen Verhalten und zur Pharmakokinetik von Sulfonamid-Trimethoprim-Kombinationen. IV. Eine vergleichende Untersuchung zur Potenzierung der Trimethoprim-Wirkung durch verschiedene Sulfonamide und eine kritische Betrachtung ihrer Dosierung. Arzneim Forsch 27: 1521–1532

    Google Scholar 

  • Seydel JK, Wempe E (1978) Potentiation of trimethoprim action with various sulfonamides: a comparison using bacterial growth kinetic techniques (Escherichia coli). Curr Chemother 658–660

    Google Scholar 

  • Seydel JK, Wempe E (1979) Synergistic antibacterial activity in vitro of trimethoprim and sulphonamides and the importance of pharmacokinetic properties for optimal therapy. Infection [Suppl 4] 7: 313–320

    Article  Google Scholar 

  • Seydel JK, Wempe E (1980) Bacterial growth kinetics of E. coli in the presence of various trimethoprim derivatives alone and in combination with sulfonamides. V. Chemotherapy 26: 361–371

    Article  CAS  Google Scholar 

  • Seydel JK, Wempe E, Miller GH, Miller L (1972) Kinetics and mechanism of trimethoprim and sulfonamides, alone or in combination, upon E. coli. Chemotherapy 17: 217–258

    Article  PubMed  CAS  Google Scholar 

  • Seydel JK, Wempe E, Miller GH, Miller L (1973) Quantification of the antibacterial action of trimethoprim alone and in combination with sulfonamides by bacterial growth kinetics. J Infect Dis 128:S 463-S 469

    Google Scholar 

  • Seydel JK, Richter M, Wempe E (1980) Mechanism of action of folate blocker diaminodiphenylsulfone (Dapsone, DDS) studied in E. coli cell-free enzyme extracts in comparison to sulfonamides ( SA ). Int J Lepr 48: 18–29

    Google Scholar 

  • Shiota T, Disraely MN, McCann MP (1964) The enzymatic synthesis of folate-like compounds from hydroxy-methyl-dihydropteridine pyrophosphate. J Biol Chem 239: 2259–2266

    PubMed  CAS  Google Scholar 

  • Then R (1973) Influence of sulfonamide antagonists on the synergism of sulfamethoxazole/trimethoprim in Escherichia coli. Zentralbi Bakteriol [Orig A] 225: 34–41

    CAS  Google Scholar 

  • Then R (1977) Synergism between trimethoprim and sulfamethoxazole. Science 197: 1301

    Article  CAS  Google Scholar 

  • Then R, Angehrn P (1973) Nature of the bactericidal action of sulfonamides and trimethoprim, alone and in combination. J Infect Dis [Suppl] 128:S 498-S 501

    Google Scholar 

  • Tiesler E (1970) Wirksamkeit einer Sulfonamid-Trimethoprim-Kombination gegen einige gramnegative Stäbchen and grampositive Kokken im Agardiffusionstest. Med Klin 65: 1825–1828

    PubMed  CAS  Google Scholar 

  • Webb JL (1963) Enzyme and metabolic inhibitors, vol 1. Academic Press, New York

    Google Scholar 

  • Winningham D, Stamey T (1970) Diffusion of sulphonamides from plasma into prostatic fluid. J Urol 104: 559–563

    PubMed  CAS  Google Scholar 

  • Wolf B, Hotchkiss RD (1963) Genetically modified folic acid synthesizing enzymes of pneumococcus. Biochemistry 2: 145–150

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seydel, J.K. (1983). Kinetics of Antibacterial Effects. In: Hitchings, G.H. (eds) Inhibition of Folate Metabolism in Chemotherapy. Handbook of Experimental Pharmacology, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81890-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81890-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81892-9

  • Online ISBN: 978-3-642-81890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics