Skip to main content

Selective Inhibitors of Bacterial Dihydrofolate Reductase: Structure-Activity Relationships

  • Chapter
Inhibition of Folate Metabolism in Chemotherapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 64))

Abstract

Although trimethoprim (TMP); (1) has been in the public domain since 1959 (Hitchings and Roth 1959) and available to the public since 1968 in combination with sulfamethoxazole as a broad spectrum antibacterial agent, it still stands almost alone in this field as a species-specific dihydrofolate reductase (DHFR) inhibitor. It was preceded by its close relative diaveridine (2) (Falco et al. 1951 a; Hitchings 1955), which found its utility as an anticoccidial agent, and was followed by ormetoprim (3) (Hoffer, et al 1971), which again found its use in the latter category. Very recently another very close relative, tetroxoprim (4) (Heumann 1974; Aschoff and Vergin 1979) has been introduced in combination with sulfadiazine as an antibacterial competitor of TMP/SMX, with the claim of higher water solubility. Other competitors have masked trimethoprim (TMP) in the form of various prodrugs, or in the form of various soluble or insoluble salts, in an effort to modify its pharmacokinetic properties. This type of modification will not be discussed in this chapter, because of the difficulty of evaluating proprietary claims.

Editorial Note. The following chapter by Barbara Roth represents some revisions and condensations of the chapter as originally written. In particular the full text deals extensively with quantitative structure—activity relationships. This full text is being published separately and will be made available to interested medicinal chemists on application to the author. Some of the numberings of the figures of the longer text have been retained in the present version in order to avoid possible confusion. The editor wishes to express his appreciation to Dr. Roth for her cooperation in adapting her text to the current volume

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aschoff HS, Vergin H (1979) Tetroxoprim — a new inhibitor of bacterial dihydrofolate reductase. J Antimicrob Chemother [Suppl B] 5: 19–25

    Google Scholar 

  • Baccanari DP, Joyner SS (1981) Dihydrofolate reductase hysteresis and its effect on inhibitor binding analyses. Biochemistry 20: 1710–1716

    Article  PubMed  CAS  Google Scholar 

  • Baccanari DP, Daluge S, King R (1981 a) Inhibition of dihydrofolate reductase: effect of NADPH on the selectivity and affinity of diaminopyrimidines. Fed Proc 40: 1748

    Google Scholar 

  • Baccanari DP, Stone D, Kuyper L (1981 b) Effect of a single amino acid substitution on Escherichia coli dihydrofolate reductase catalysis and ligand binding. J Biol Chem 256: 1738–1747

    PubMed  CAS  Google Scholar 

  • Baker BR (1964) Differential inhibition of dihydrofolate reductase from different species. J Pharm Sci 53: 1137–1138

    Article  PubMed  CAS  Google Scholar 

  • Baker BR (1967) Design of active-site-directed irreversible inhibitors. John Wiley, New York Chichester

    Google Scholar 

  • Baker BR, Lee WW, Skinner WA, Martinez AP, Tong E (1960) Potential anticancer agents. L. Non-classical metabolites. II. Some factors in the design of exo-alkylating enzyme inhibitors, particularly of lactic dehydrogenase. J Med Pharm Chem 2: 633–657

    Article  PubMed  CAS  Google Scholar 

  • Baker DJ, Beddell CR, Champness JN, Goodford PJ, Norrington FEA, Smith DR, Stammers DK (1981) The binding of trimethoprim to bacterial dihydrofolate reductase. FEBS Lett 126: 49–52

    Article  PubMed  CAS  Google Scholar 

  • Blakley RL, Morrison JF (1970) The determination of inhibition effects of folate analogues on dihydrofolate reductase. In: Chemistry and biology of pteridines. Proceedings of the Fourth International Symposium on Pteridines. International Academic Press, Tokyo, pp 315–327

    Google Scholar 

  • Blakley RL, Ramasastri BV, McDougall BM (1963) The biosynthesis of thymidylic acid. D. Hydrogen isotope studies with dihydrofolate reductase and thymidylate synthetase. J Biol Chem 238: 3075–3079

    PubMed  CAS  Google Scholar 

  • Brossi A, Grunberg E, Hoffer M, Teitel S (1971) Synthesis and chemotherapeutic activity of two metabolites of trimethoprim. J Med Chem 14: 58–59

    Article  PubMed  CAS  Google Scholar 

  • Burchall JJ, Hitchings GH (1965) Inhibitor binding analysis of dihydrofolate reductases from various species. Mol Pharmacol 1: 126–136

    PubMed  CAS  Google Scholar 

  • Bushby SRM, Hitchings GH (1968) Trimethoprim, a sulfonamide potentiator. Br J Pharmacol Chemother 33: 72–90

    PubMed  CAS  Google Scholar 

  • Carrington HC, Crowther AF, Davey DG, Levi AA, Rose FL (1951) A metabolite of “paludrine” with high antimalarial activity. Nature 168: 1080

    Article  PubMed  CAS  Google Scholar 

  • Cayley PJ, Albrand JP, Feeney J, Roberts GCK, Piper EA, Burgen ASV (1979) Nuclear magnetic resonance studies of the binding of trimethoprim to dihydrofolate reductase. Biochemistry 18: 3886–3894

    Article  PubMed  CAS  Google Scholar 

  • Charlton PA, Young DW, Birdsall B, Feeney J, Roberts GCK (1979) Stereochemistry of reduction of folic acid using dihydrofolate reductase. J Chem Soc Chem Commun 922–924

    Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50% inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Cody V, DeJarnette E (1981) Structural comparisons of 2,4-diamino-5-(3,5-dimethoxy-4-(2propene)benzyl)pyrimidine with trimethoprim as an inhibitor of dihydrofolate reductase. Fed Proc 40: 1797

    Google Scholar 

  • Curd FHS, Davey DG, Rose FL (1945) Studies on synthetic antimalarial drugs. X. Some biguanide derivatives as new types of antimalarial substances with both therapeutic and causal prophylactic activity. Ann Trop Med Parasitol 39: 208–216

    Google Scholar 

  • Daniel LJ, Norris LC (1947) Growth inhibition of bacteria by synthetic pterins. II. Studies with Escherichia coli, Staphylococcus aureus, and Lactobacillus arabinosus showing synergism between pterin and sulfonamide. J Biol Chem 170: 747–756

    CAS  Google Scholar 

  • Daniel LJ, Norris LC, Scott ML, Heuser GF (1947) Growth inhibition of bacteria by synthetic pterins. I. Studies with Streptococcus faecalis, Lactobacillus casei, and Lactobacillus arabinosus. J Biol Chem 169: 689–697

    PubMed  CAS  Google Scholar 

  • Daum A, Fernex M, Wick AE (1980) Diuretic compositions containing potassium retaining agents — comprising 2,4-diamino-5-aminobenzyl-pyrimidine derivatives. German Patent 2,936, 244

    Google Scholar 

  • Dietrich SW, Blaney JM, Reynolds MA, Jow PYC, Hansch C (1980) Quantitative structure-selectivity relationships. Comparison of the inhibition of Escherichia coli and bovine liver dihydrofolate reductase by 5-(substituted-benzyl)-2,4-diaminopyrimidines. J Med Chem 23: 1205–1212

    Article  PubMed  CAS  Google Scholar 

  • Elion GB, Singer S, Hitchings GH (1960) Potentiation in combinations of three biochemically related antimetabolites. Antibiot Chemother 10: 556–564

    CAS  Google Scholar 

  • Elslager EF, Davoll J (1974) Synthesis of fused pyrimidines as folate antagonists. In: Castle RN, Townsend LB (eds) Lectures in heterocyclic chemistry, vol II. Hetero, Oren, Utah, pp 597-s 133

    Google Scholar 

  • Eislager EF, Clarke J, Johnson J, Werbel LM, Davoll J (1972) Folate antagonists. 5. Antimalarial and antibacterial effects of 2,4-diamino-6-(aryloxy and aralkoxy) quinazoline antimetabolites. J Heterocycl Chem 9: 759–773

    Article  Google Scholar 

  • Falco EA, Russell PB, Hitchings GH (1951 a) 2,4-Diaminopyrimidines as antimalarials. I. 5-Aryloxyl and 5-alkoxy derivatives. J Am Chem Soc 73: 3753–3758

    Google Scholar 

  • Falco EA, Goodwin LG, Hitchings GH, Rollo IM, Russell PB (1951 b) 2,4-Diaminopyrimidines — a new series of antimalarials. Br J Pharmacol 6: 185–200

    Google Scholar 

  • Falco EA, DuBreuil S, Hitchings GH (1951 c) 2,4-Diaminopyrimidines as antimalarials. II. 5-Benzyl derivatives. J Am Chem Soc 73: 3758–3762

    Google Scholar 

  • Falco EA, Roth B, Hitchings GH (1961) 5-Arylthiopyrimidines. I. 2,4-Diamino derivatives. J Org Chem 26: 1143–1146

    Google Scholar 

  • Feldman RL, Bing DH, Furie BC, Furie D (1978) Interactive computer surface graphics approach to study of the active site of bovine trypsin. Proc Natl Acad Sci USA 75: 5409–5412

    Article  Google Scholar 

  • Fontecilla-Camps JC, Bugg CE, Temple C, Rose JD, Montgomery JA, Kisliuk RL (1979) X-Ray crystallography studies of the structure of 5,10-methenyltetrahydrofolic acid. In: Kisliuk RL, Brown GM (eds) Chemistry and biology of pteridines. Elsevier North Holland, New York, pp 235–240

    Google Scholar 

  • Fritsche E, Liebenow W, Prikryl J (1979) 2,4-Diamino-5-(4’-methylthio)benzylpyrimidines, compounds, compositions, and methods of use. U.S. Patent 4, 180, 578

    Google Scholar 

  • Gems FR, Perrotta A, Hitchings GH (1966) 5-Arylaminopyrimidines. J Med Chem 9: 108–115

    Google Scholar 

  • Gund P, Poe M, Hoogsteen KH (1977) Calculations by complete neglect of differential overlap (CNDO/2) on dihydrofolic acid: role of N(5) in reduction of dihydrofolate reductase. Mol Pharmacol 13: 1111–1115

    PubMed  CAS  Google Scholar 

  • Gund P, Andose JD, Rhodes JB, Smith GM (1980) Three-dimensional molecular modeling and drug design. Science 208: 1425–1431

    Article  PubMed  CAS  Google Scholar 

  • Heumann L Co GmbH (1974) 4’-Alkyl dioxyalkylene-5-benzylpyrimidines, the preparation thereof and compositions containing them. Belgian Patent 812,375

    Google Scholar 

  • Hitchings GH (1952) Daraprim as an antagonist of folic and folinic acids. Trans R Soc Trop Med Hyg 46: 467–473

    Article  PubMed  CAS  Google Scholar 

  • Hitchings GH (1955) Purine and pyrimidine antagonists. Am J Clin Nutr 3: 321–327

    PubMed  CAS  Google Scholar 

  • Hitchings GH, Bushby SRM (1961) 5-Benzyl-2,4-diaminopyrimidines, a new class of systemic antibacterial agents. In: Sissakian NM (ed) V th International Congress of Biochemistry, Moscow, pp 165–171

    Google Scholar 

  • Hitchings GH, Ledig KW (1960) 2,4-Diamino-5,6-dialkylpyrido(2,3-d)pyrimidines. U.S. Patent 2, 937, 284

    Google Scholar 

  • Hitchings GH, Roth B (1959) Trialkoxybenzylpyrimidines and method. U.S. Patent 2,909, 522

    Google Scholar 

  • Hitchings GH, Roth B (1980) Dihydrofolate reductases as targets for selective inhibitors. In: Sandler M (ed) Enzyme inhibitors as drugs. MacMillan, London, pp 263–280

    Google Scholar 

  • Hitchings GH, Smith SL (1980) Dihydrofolate reductases as targets for inhibitors. In: Weber G (ed) Advances in enzyme regulation, vol 18. Pergamon, Oxford New York

    Google Scholar 

  • Hitchings GH, Elion GB, Vanderwerff H, Falco EA (1948) Pyrimidine derivatives, as antagonists of pteroylglutamic acid. J Biol Chem 174: 765–766

    PubMed  CAS  Google Scholar 

  • Hitchings GH, Rollo IM, Goodwin LG, Coatney GR (1952) Symposium on daraprim. Trans R Soc Trop Med Hyg 46: 467–497

    Article  PubMed  CAS  Google Scholar 

  • Hitchings GH, Elion GB, Singer S (1954) Derivatives of condensed pyrimidines as antimetabolites. In: Wolstenholme (ed) Chemistry and biology of pteridines. Churchill Livingstone, London Edinburgh, pp 290–303

    Google Scholar 

  • Hitchings GH, Russell PB, Whittaker N (1956) Some 2.6-diamino and 2-amino-6-hydroxy derivatives of 5-aryl-4:5-dihydropyrimidines. A new syntheses of 4-alkyl-5-arylpyrimidines. J Chem Soc 1019–1028

    Google Scholar 

  • Hitchings GH, Falco EA, Ledig KW (1960) Diaminoquinazolines and method of making. U.S. Patent 2,945, 859

    Google Scholar 

  • Hitchings GH, Burchall JJ, Ferone R (1966) Comparative enzymology of dihydrofolate reductases as a basis for chemotherapy. Proc Int Pharmacol Meet, 3 rd 5: 3–18

    Google Scholar 

  • Hoffer M (1967) Processes and intermediates for pyrimidine derivatives. U.S. Patent 3,341, 541

    Google Scholar 

  • Hoffer M (1969) 2,4-Diamino-5-(2’,4’,5’-substituted benzyl)pyrimidines, intermediates and processes. U.S. Patent 3, 485, 840

    Google Scholar 

  • Hoffer M, Grunberg E, Mitrovic M, Brossi A (1971) An improved synthesis of diaveridine, trimethoprim, and closely related 2,4-diaminopyrimidines. J Med Chem 14: 462–463

    Article  PubMed  CAS  Google Scholar 

  • Hurlbert BS, Ferone R, Herrmann TA, Hitchings GH, Barnett M, Bushby SRM (1968) Studies on condensed pyrimidine systems. XXV. 2,4-Diaminopyrido[2,3-d]pyrimidines. Biological data. J Med Chem 11: 711–717

    Google Scholar 

  • Hynes TB, Ashton WT, Bryansmith D, Freisheim JH (1974) Quinazolines as inhibitors of dihydrofolate reductase. 2. J Med Chem 17: 1023–1025

    Article  PubMed  CAS  Google Scholar 

  • Jackson RC, Niethammer D (1977) Acquired methotrexate resistance in lymphoblasts resulting from altered kinetic properties of dihydrofolate reductase. Eur J Cancer 13: 567–575

    Article  PubMed  CAS  Google Scholar 

  • Jackson RC, Hart LI, Harrap KR (1976) Intrinsic resistance to methotrexate of cultured mammalian cells in relation to the inhibition kinetics of their dihydrofolate reductases. Cancer Res 36: 1991–1997

    PubMed  CAS  Google Scholar 

  • Kompis I, Wick AE (1979) 2,4-Diamino-5-benzylpyrimidine and Verfahren zu deren Herstellung. German Patent 2, 847, 825

    Google Scholar 

  • Kompis I, Rey-Bellet G, Zanetti G (1975) Neue Benzylpyrimidine. German Patent 2,443, 682

    Google Scholar 

  • Kompis I, Rey-Bellet G, Zanetti G (1976) Benzylpyrimidines. German Patent 2,558, 150

    Google Scholar 

  • Kompis I, Mueller W, Boehni E, Then R, Montavon M (1977) 2,4-Diamino-5-(pyridylmethyl)-pyrimidine als potentielle Chemotherapeutica. Eur J Med Chem 12: 531–536

    Google Scholar 

  • Kompis I, Then R, Boehni E, Rey-Bellet G, Zanetti G, Montavon M (1980) Synthesis and antimicrobial activity of C(4’)-substituted analogs of trimethoprim. Eur J Med Chem 15: 17–22

    CAS  Google Scholar 

  • Kompis I, Then R, Wick A, Montavon M (1981) 2,4-Diamino-5-benzylpyrimidines as inhibitors of dihydrofolate reductase. In: Brodbeck U (ed) Enzyme inhibitors. Verlag Chemie, Weinheim, pp 178–189

    Google Scholar 

  • Lampen JO, Jones MJ (1946) The antagonism of sulfonamide inhibition of certain lactobacilli and enterococci by pteroylglutamic acid and related compounds. J Biol Chem 166: 435–448

    PubMed  CAS  Google Scholar 

  • Langridge R, Ferrin TE, Kuntz ID, Connolly ML (1981) Real-time color graphics in studies of molecular interactions. Science 211: 661–666

    Article  PubMed  CAS  Google Scholar 

  • Mallette MF, Cain CK, Taylor EC Jr (1947) Pyrimido[4,5-b]pyrazines. II. 2,4-Diaminopyrimido[4,5-b]pyrazine and derivatives. J Am Chem Soc 69: 1814–1816

    Article  PubMed  CAS  Google Scholar 

  • Matthews DA, Alden RA, Bolin JT et al. (1977) Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate. Science 197: 452–455

    Google Scholar 

  • Matthews DA, Alden RA, Bolin JT et al. (1978) Dihydrofolate reductase from Lactobacillus casei. X-Ray structure of the enzyme-methotrexate NADPH complex. J Biol Chem 253: 6946–6954

    Google Scholar 

  • Pastore EJ, Friedkin M (1962) The enzymatic synthesis of thymidylate. II. Transfer of tritium from tetrahydrofolate to the methyl group of thymidylate. J Biol Chem 237: 3802–3810

    Google Scholar 

  • Perun TJ, Rasmussen RR, Horrom BW (1975) Pharmaceutical 2,4-diamino-5-benzylpyrimidines. U.S. Patent 4,008, 236

    Google Scholar 

  • Perun TJ, Rasmussen RR, Horrom BW (1978) 2,4-Diamino-5-benzylpyrimidines. U.S. Patent 4, 087, 528

    Google Scholar 

  • Phillips T, Bryan RF (1969) The crystal structure of the antimalarial agents daraprim and trimethoprim. Acta Crystallogr Sect A 25: 5 200

    Google Scholar 

  • Poe M (1977) Acidic dissociation constants of folic acid, dihydrofolic acid and methotrexate. J Biol Chem 252: 3724–3728

    PubMed  CAS  Google Scholar 

  • Rey-Bellet G, Bohni E, Kompis I, Montavon M, Then R, Zanetti G (1975) 2,4-Diamino- 5-benzylpyrimidine als potentielle Chemotherapeutica. Eur J Med Chem 10: 7–9

    Google Scholar 

  • Roberts GCK (1978) Origins of specificity in the binding of small molecules to dihydrofolate reductase. Ciba Found Symp 60: 89–104

    CAS  Google Scholar 

  • Rosen P (1977) 2,4-Diaminopyrimidine derivatives and processes. U.S. Patent 4, 033, 962

    Google Scholar 

  • Roth B (1973) Alkyl substituted benzyl pyrimidines. U.S. Patent 3,772, 289

    Google Scholar 

  • Roth B (1974) 2,4-Diamino-5-benzylpyrimidines. U.S. Patent 3, 822, 264

    Google Scholar 

  • Roth B, Burchall JJ (1971) Small molecule inhibitors of dihydrofolate reductase. Methods Enzymol 18 B: 779–786

    Google Scholar 

  • Roth B, Strelitz JZ (1969) The protonation of 2,4-diaminopyrimidines. I. Dissociation constants and substituent effects. J Org Chem 34: 821–836

    Google Scholar 

  • Roth B, Strelitz JZ (1972) Substituted 2,4-diamino-5-benzylpyrimidines. U.S. Patent 3,692, 787

    Google Scholar 

  • Roth B, Burrows RB, Hitchings GH (1960) Abstracts 137th Meeting, American Chemical Society, Cleveland, 31 N

    Google Scholar 

  • Roth B, Falco EA, Hitchings GH, Bushby SRM (1962) 5-Benzyl-2,4-diaminopyrimidines as antibacterial agents. I. Synthesis and antibacterial activity in vitro. J Med Pharm Chem 5: 1103–1123

    Article  CAS  Google Scholar 

  • Roth B, Burrows RB, Hitchings GH (1963) Anthelmintic agents. 1,2-Dihydro-s-triazines. J Med Chem 6: 370–378

    Article  PubMed  CAS  Google Scholar 

  • Roth B, Yeowell DA (1971) The synthesis of 5-benzoylpyrimidines. [Abstr] Third International Congress of Heterocyclic Chemistry, Sendai, Japan, pp 358–361

    Google Scholar 

  • Roth B, Aig E, Lane K, Ferone R, Bushby SRM (1972) An analysis of trimethoprim geometry from analog studies. Abstracts 164th American Chemical Society National Meeting, New York MEDI 23

    Google Scholar 

  • Roth B, Stuart A, Paterson T (1974) 2,4-Diamino-5-benzylpyrimidines and processes for their production. British Patent 1, 375, 162

    Google Scholar 

  • Roth B, Strelitz JZ, Rauckman BS ( 1980 a) 2,4-Diamino-5-benzylpyrimidines and analogues as antibacterial agents. 2. C-Alkylation of pyrimidines with Mannich bases and application to the synthesis of trimethoprim and analogues. J Med Chem 23: 379–384

    Google Scholar 

  • Roth B, Aig E, Lane K, Rauckman BS (1980 b) 2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 4. 6-Substituted trimethoprim derivatives from phenolic Mannich intermediates. Application to the synthesis of trimethoprim and 3,5’-dialkylbenzyl analogues. J Med Chem 23: 535–541

    Google Scholar 

  • Roth B, Aig E, Rauckman BS et al. (1981) 2,4-Diamino-5-benzylpyrimidines and analogues as antibacterial agents. 5. 3’,5’-Dimethoxy-4’-substituted benzyl analogues of trimethoprim. J Med Chem 24: 933–941

    Google Scholar 

  • Russell PB, Hitchings GH (1951) 2,4-Diaminopyrimidines as antimalarials. IV. 5-Aryl derivatives. J Am Chem Soc 73: 3763–3770

    Google Scholar 

  • Schwartz DE, Vetter W, Englert G (1970) Trimethoprim metabolites in rat, dog and man: Qualitative and quantitative studies. Arzneim Forsch 20: 1867–1871

    Google Scholar 

  • Seeger DR, Smith JM Jr, Hultquist ME (1947) Antagonist for pteroylglutamic acid. J Am Chem Soc 69: 25–67

    Article  Google Scholar 

  • Seeger DR, Cosulich DB, Smith JM Jr, Hultquist ME (1949) Analogs of pteroylglutamic acid. III. 4-Amino derivatives. J Am Chem Soc 71: 1753–1758

    Article  CAS  Google Scholar 

  • Seydel JK, Wempe E (1980) Bacterial growth kinetics of E. coli in the presence of various trimethoprim derivatives alone and in combination with sulfonamides. Chemotherapy 26: 361–371

    Article  PubMed  CAS  Google Scholar 

  • Stogryn EL (1972) Synthesis of trimethoprim variations. Replacement of CH2 by polar groupings. J Med Chem 15: 200–201

    Article  PubMed  CAS  Google Scholar 

  • Tokuyama K (1974) 2,4-Diamino-5-benzylpyrimidine derivatives. Japan Patent 69,679 Werkheiser WC (1960) Specific binding of 4-amino folic acid analogues by folic acid reductase. J Biol Chem 236: 888–893

    Google Scholar 

  • Williams JW, Morrison JF, Duggleby RG (1979) Methotrexate, a high-affinity pseudosubstrate of dihydrofolate reductase. Biochemistry 18: 2567–2573

    Article  PubMed  CAS  Google Scholar 

  • Williams JW, Duggleby RG, Cutler R, Morrison JF (1980) The inhibition of dihydrofolate reductase by folate analogues: structural requirements for slow and tight-binding inhibition. Biochem Pharmacol 29: 589–595

    Article  PubMed  CAS  Google Scholar 

  • Williams MN, Poe M, Greenfield NJ, Hirshfield JM, Hoogsteen K (1973) Methotrexate binding to dihydrofolate reductase from a methotrexate resistant strain of Escherichia coli. J Biol Chem 248: 6375–6379

    PubMed  CAS  Google Scholar 

  • Woods DD (1940) The relation of p-aminobenzoic acid to the mechanism of the action of sulphanilamide. Br J Exp Pathol 21: 74–90

    CAS  Google Scholar 

  • Zakrzewski SF, Nichol CA (1958) On the enzymatic reduction of folic acid by a purified hydrogenase. Biochim Biophys Acta 27: 425–426

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roth, B. (1983). Selective Inhibitors of Bacterial Dihydrofolate Reductase: Structure-Activity Relationships. In: Hitchings, G.H. (eds) Inhibition of Folate Metabolism in Chemotherapy. Handbook of Experimental Pharmacology, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81890-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81890-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81892-9

  • Online ISBN: 978-3-642-81890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics