Skip to main content

Sulfonamides: Structure-Activity Relationships and Mechanism of Action

  • Chapter
Inhibition of Folate Metabolism in Chemotherapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 64))

Abstract

The discovery of the antibacterial activity of prontosil (1) in the early 1930 s (Domagk 1935, 1957), the first effective chemotherapeutic agent to be employed for the systemic treatment of bacterial infection in humans (Foerster 1933), was the beginning of the present era of chemotherapy. The history of the development of sulfonamides as a major class of chemotherapeutic agents is one of the most fascinating chapters in drug research, highlighting the roles of skilful planning and serendipity. The synthesis of prontosil (1) was a carry-over of the interest generated in dyes in general as possible antimicrobials as a result ofE hrlich’s studies on the relationship between selective staining by dyes and their antiprotozoal activity, and in the sulfonamide group as contributory to fastness for acid wool dyes as a result of the work of Horlein, Dressel and Kethe of I.G. Farbenindustrie (see Mietzsch 1938), which led Mietzsch and Klarer (1935) to synthesize a group of azo dyes containing a sulfonamide group, which included prontosil. The lack of correlation between in vitro and in vivo antibacterial tests prompted Domagk (1935) to resort to in vivo testing, a very fortunate decision, since otherwise the fate of sulfonamides might have been different. In fact, similar dyes had been synthesized almost a decade earlier, such as p-sulfonamidobenzeneazodihydrocupreine (Heidelberger and Jacobs 1919), but tested in vitro, and thus understandably showing rather poor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson RH, Bridges JW, Kibby MR, Walker SR, Williams RT (1970) The fate of sulfadimethoxine in primates compared with other species. Biochem J 118: 41–45

    PubMed  CAS  Google Scholar 

  • Akiba T, Yokota T (1962) Studies on the mechanism of transfer of drug resistance in bacteria 18. Incorporation of 35S-sulfathiazole into cells of the multiple resistant strain and artificial sulfonamide resistant strain of E. coli. Med Biol 63: 155–159

    Google Scholar 

  • Albert A (1954) The transformation of purines into pteridines. Biochem J 57: X

    Google Scholar 

  • Anand N (1979) Sulfonamides and sulfones. In: Wolff ME (ed) Burger’s medicinal chemistry, 4th edn, Part II. Wiley and Sons, New York, p 1

    Google Scholar 

  • Angier RB, Boothe JH, Hutchings BL, Mowat JH, Semb J, Stokstad ELR, Subba-Row Y, Waller CW, Cosulich DB, Fahrenbach MJ, Hultquist ME, Kuh E, Northey EH, Seeger DR, Sickels JP, Smith JM Jr (1946) Synthesis of a compound identical with the L. caseifactor isolated from liver. Science 103: 667–669

    Article  CAS  Google Scholar 

  • Apt W (1970) Tratamiento de la toxoplasmosis (in Spanish). Bol Chil Parasitol 25: 65–68

    PubMed  CAS  Google Scholar 

  • Archibald HM, Ross CM (1960) Preliminary report on the effect of diaminodiphenylsulphone on malaria in Northern Nigeria. J Trop Med Hyg 63: 25–27

    PubMed  CAS  Google Scholar 

  • Basu PC, Singh NN, Singh N (1964) Potentiation of activity of diphenylsulfone and pyrimethamine against P. gallinaceumand P. cynomolgi bastianellii. Bull WHO 31: 699–703

    PubMed  CAS  Google Scholar 

  • Bell PH, Roblin RO Jr (1942) Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide type compounds. J Am Chem Soc 64: 2905–2917

    Article  CAS  Google Scholar 

  • Biagi GL, Barbaro AM, Guerra MC, Forti GC, Fracasso ME (1974) Relationship between it and Rm values of sulfonamides. J Med Chem 17: 28–33

    Article  PubMed  CAS  Google Scholar 

  • Biocca E (1943) Quimioterapia sulfonica da toxoplasmose (in Portuguese). Arq Inst Biol (Sao Paulo) 27: 7–10

    CAS  Google Scholar 

  • Bishop A (1959) Drug resistance in protozoa. Biol Rev 34: 445–500

    CAS  Google Scholar 

  • Bishop A (1963) Some recent developments in the problem of drug resistance in malaria. Parasitology 53: 10 p

    Google Scholar 

  • Blanchard KC (1941) The isolation of p-aminobenzoic acid from yeast. J Biol Chem 140: 919–926

    CAS  Google Scholar 

  • Bliss EA, Long PH (1941) Observations on the mode of action of sulfanilamide. The antibacteriostatic action of methionine. Bull Johns Hopkins Hosp 69: 14–38

    CAS  Google Scholar 

  • Bock L, Miller GH, Schaper KJ, Seydel JK (1974) Sulfonamide structure activity relationships in a cell-free system 2 Proof for the formation of a sulfonamide-containing folate analog. J Med Chem 17: 23–28

    Article  PubMed  CAS  Google Scholar 

  • Böhni E, Fust B, Reider J, Schaerer K, Havas L (1969) Comparative toxocological, chemotherapeutic, and pharmacokinetic studies with sulformethoxine and other sulfonamides in animals and man. Chemotherapy 14: 195–226

    Article  PubMed  Google Scholar 

  • Boroff DA, Cooper A, Bullowa JGM (1942) Inhibition of sulfapyridine in human serum, exudates, and transudates. J Immunol 43: 341–348

    CAS  Google Scholar 

  • Bratton AC, Marshall EK Jr (1939) A new coupling component for sulphanilamide determination. J Biol Chem 128: 537–550

    CAS  Google Scholar 

  • Bretschneider H, Klotzer W, Spiteller G (1961) Zweitsynthese des 6-sulfanilamido-2,4-dimethoxypyrimidins and Synthese des 6-sulfanilamide-2-methoxy-4,5-dimethylpyrimidins. Monatsh Chemie 92: 128–134

    Article  CAS  Google Scholar 

  • Brown GM (1962) The biosynthesis of folic acid. Inhibition by sulfonamides. J Biol Chem 237: 536–540

    PubMed  CAS  Google Scholar 

  • Brown GM (1971) The biosynthesis of pteridines. Adv Enzymol 35: 35–77

    PubMed  CAS  Google Scholar 

  • Brown GM, Weisman RA, Molnar DA (1961) The biosynthesis of folic acid. I. Substrate and cofactor requirements for enzymatic synthesis by cell-free extracts of E. coli. J Biol Chem 236: 2534–2543

    CAS  Google Scholar 

  • Browne SG (1969a) The evaluation of present antileprosy compounds. Adv Pharmacol Chemother 7: 211–246

    Article  CAS  Google Scholar 

  • Browne SG (1969b) Dapsone-resistant M. lepraein a patient receiving dapsone in low doses. Int J Lepr 37: 296–301

    CAS  Google Scholar 

  • Brownlee G, Green AF, Woodbine M (1948) Sulphetrone. A chemotherapeutic agent for tuberculosis. Pharmacology and chemotherapy. Br J Pharmacol 3: 15–28

    CAS  Google Scholar 

  • Brueckner AH (1943) The effect of pH on sulphonamide activity. Yale J Biol Med 15: 813–821

    PubMed  CAS  Google Scholar 

  • Bushby SRM, Woiwood AJ (1955) Excretion products of 4:4’-diaminodiphenylsulfone. Am Rev Tuberc Pulm Dis 72: 123–125

    CAS  Google Scholar 

  • Bushby SRM, Woiwood AJ (1956) The identification of the major diazotizable metabolite of 4:4’-diaminodiphenylsulphone in rabbit urine. Biochem J 63: 406–408

    PubMed  CAS  Google Scholar 

  • Buttle GAH, Grey WH, Stephenson D (1936) Protection of mice against streptococcal and other infections byp-aminobenzene sulfonamide and related substances. Lancet I: 1286–1290

    Article  CAS  Google Scholar 

  • Camerino B, Palamidessi G (1960) Derivati della parazina II. Sulfonamdopir (in Italian). Gazz Chim Ital 90: 1802–1815

    Google Scholar 

  • Coggeshall LT (1938) The cure of P. knowlesimalaria in Rhesus monkeys with sulfanilamide and their susceptibility to reinfection. Am J Trop Med Hyg 18: 715–721

    CAS  Google Scholar 

  • Coggeshall LT, Maier J, Best CA (1941) The effectiveness of two new types of chemotherapeutic agents in malaria: sodium p,p’-diaminodiphenylsulphone-N,N’-di-dextrosesulfonate (Promin) and 2-sulfanilamidopyrimidine (sulfadiazine). JAMA 117: 1077–1081

    Article  Google Scholar 

  • Colebrook L, Kenny M (1936) Treatment of human peripheral infections and of experimental infections in mice with prontosil. Lancet 1: 1279–1286

    Article  Google Scholar 

  • Connar RG, Ferguson TB, Sealy WC, Conant NF (1951) Report of a single case with recovery. J Thorac Surg 22: 424–426

    PubMed  CAS  Google Scholar 

  • Cowdry EV, Ruangsiri C (1941) Influence of promin, starch, and heptaldehyde in experimental leprosy in rats. Arch Pathol 32: 632–640

    CAS  Google Scholar 

  • Cowles PB (1942) Ionization and the bacteriostatic action of sulfonamides. Yale J Biol Med 14: 599–604

    PubMed  CAS  Google Scholar 

  • Day PL, Langston WC, Darby WJ (1938) Failure of nicotinic acid to prevent nutritional cytopenia in the monkey. Proc Soc Exp Biol Med 38: 860–863

    CAS  Google Scholar 

  • Deininger R, Gutbrod H (1960) Die pharmakodynamische Wirkung des neun Sulfonamido, 2-(p-aminobenzol sulfonamido)-4,5-dimethyloxazole. Arzneim Forsch 10: 612–619

    CAS  Google Scholar 

  • Domagk G (1935) Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Dtsch Med Wochenschr 61: 250–253

    Article  CAS  Google Scholar 

  • Domagk G (1957) Twentyfive years of sulfonamide therapy. Ann NY Acad Sci 69: 380–384

    Article  PubMed  CAS  Google Scholar 

  • Donovick R, Bayan A, Hamre D (1952) The reversal of the activity of antituberculous compounds in vitro. Am Rev Tuberc Pulm Dis 66: 219–227

    CAS  Google Scholar 

  • Ellard GA (1966) Absorption, metabolism and excretion of di-(p-aminophenyl)sulphone (Dapsone) and di(p-aminophenyl)-sulphoxide in man. Br J Pharmacol 26: 212–217

    CAS  Google Scholar 

  • Elslager EF (1974) New perspectives on the chemotherapy of malaria, filariasis and leprosy. Prog Drug Res 18: 99–172

    PubMed  CAS  Google Scholar 

  • Elslager EF, Worth DF (1965) Repository antimalarial drugs: N,N’-diacetyl-4,4’-diamino-diphenylsulfone and related 4-acylaminodiphenylsulfones. Nature 206: 630–631

    Article  PubMed  CAS  Google Scholar 

  • Eyles DE (1956) Newer knowledge of the chemotherapy of toxoplasmosis. Ann NY Acad Sci 64: 252–267

    Article  CAS  Google Scholar 

  • Eyles DE, Coleman N (1955) An evaluation of the curative effects of pyrimethamine and sulfadiazine, alone and in combination, on experimental mouse toxoplasmosis. Antibiot Chemother 5: 529–539

    CAS  Google Scholar 

  • Feldman WH, Hinshaw HC, Moses HE (1942) Promin in experimental tuberculosis. Am Rev Tuberc Pulm Dis 45: 303–308

    CAS  Google Scholar 

  • Ferone R (1973) The enzymic synthesis of dihydropteroate and dihydrofolate by Plasmodium berghei. J Protozool 20: 459–464

    PubMed  CAS  Google Scholar 

  • Fildes P (1940) A rational approach to research in chemotherapy. Lancet I: 955–957

    Article  CAS  Google Scholar 

  • Findlay GM (1940) The action of sulfanilamide on the virus of Lymphogranuloma venereum. Br J Exp Pathol 21: 356–360

    CAS  Google Scholar 

  • Foernzler EC, Martin AN (1967) Molecular orbital calculations on sulfonamide molecules. J Pharm Sci 56: 608–615

    Article  PubMed  CAS  Google Scholar 

  • Foerster R (1933) Sepsis im Anschluß an ausgehende Peritoritis. Heilung durch Streptozon. Zentral Haut Geschlechtskr 45: 549–550

    Google Scholar 

  • Fox CL Jr, Rose MM (1942) Ionisation of sulfonamides. Proc Soc Exp Biol Med 50: 142–145

    CAS  Google Scholar 

  • Friedkin M (1963) Enzymatic aspects of folic acid. Ann Rev Biochem 32: 185–214

    Article  PubMed  CAS  Google Scholar 

  • Fujita T (1972a) Hydrophobic bonding of sulfonamide drugs with serum albumin. J Med Chem 15: 1049–1056

    Article  CAS  Google Scholar 

  • Fujita T (1972b) Substituent-effect analysis of the rates of metabolism and excretion of sulfonamide drugs. In: Gould RF (ed) Biological correlations — the Hansch approach. American Chemical Society, Washington DC, p 80

    Google Scholar 

  • Fujita T, Hansch C (1967) Analysis of the structure-activity relationship of the sulfonamide drugs using substituent constants. J Med Chem 10: 991–1000

    Article  PubMed  CAS  Google Scholar 

  • Fuller AT (1937) Is p-aminobenzenesulfonamide an active agent in prontosil therapy? Lancet II: 194–198

    Article  Google Scholar 

  • Fust B, Böhni E (1959) Tolerance and antibacterial properties of 2,4-dimethoxy-6-sulfanil-amido-1,3-diazine (Madribon) and some other sulfonamides. Antiobiot Med 6 (I): 3–10

    Google Scholar 

  • Fust B, Bühni E (1962) Vergleichende experimentelle Untersuchungen mit 5-Methyl-1,3-Sulfanilamido-Isoxazol, anderen Sulfanilamiden and Antibiotica. Schweiz Med Wochenschr 92:1599–1604

    PubMed  CAS  Google Scholar 

  • Garrett ER, Mielck JB, Seydel JK, Kessler HJ (1969) Kinetics and mechanisms of action of drugs on microorganisms. VIII. Quantification and prediction of the biological activities of m-and p-substituted N’-phenylsulfanilamides by microbial kinetics. J Med Chem 12: 740–745

    Article  PubMed  CAS  Google Scholar 

  • Garrod LP, James DG, Lewis AAG (1969) The synergy of trimethoprim and sulfonamides. Postgrad Med J [Suppl] 45: 1–84

    Google Scholar 

  • Geimo P (1908) Liber Sulfamide der p-Amidobenzolsulphonsäure. J Prakt Chem 77: 369–382

    Google Scholar 

  • Gordon GR, Peters JH, Gelben R, Levy L (1970) Metabolic disposition of dapsone (4,4’-diaminodiphenylsulfone) in animals and man. Proc West Pharmacol Soc 13: 17–24

    CAS  Google Scholar 

  • Gots JS (1953) Occurrence of 4-amino-5-imidazolecarboxamide as a pentose derivative. Nature 172: 256–257

    Article  PubMed  CAS  Google Scholar 

  • Green HN (1940) The mode of action of sulfanilamide. Br J Exp Pathol 21: 38–64

    CAS  Google Scholar 

  • Greenberg GR (1954) A formylation cofactor. J Am Chem Soc 76: 1458–1459

    Article  CAS  Google Scholar 

  • Greenberg J (1949) The antimalarial activity of 2,4-diamino-6,7-diphenylpterin: its potentiation by sulphadiazine and inhibition by pteroylglutamic acid. J Pharmacol Exp Ther 97: 484–487

    PubMed  CAS  Google Scholar 

  • Greenberg J, Richeson EM (1950) Potentiation of the antimalarial activity of sulfadiazine by 2,4-diamino-5-aryloxypyrimidines. J Pharmacol Exp Ther 99: 111–119

    Google Scholar 

  • Greenberg J, Richeson EM (1951) Effect of 2,4-diamino-5-(p-chlorophenoxy)-6-methylpyrimidine and 2,4-diamino-6,7-diphenylpteridine on chlorguanide-resistant strain of Plasmodium gallinaceum. Proc Soc Exp Biol Med 77: 174–176

    PubMed  CAS  Google Scholar 

  • Griffin MJ, Brown MJ (1964) The biosynthesis of folic acid. III. Enzymatic formation of dihydrofolic acid from dihydropteroic acid and of tetrahydropteroylpolyglutamic acid compound from tetrahydrofolic acid. J Biol Chem 239: 310–316

    PubMed  CAS  Google Scholar 

  • Heidelberger M, Jacobs WA (1919) Synthesis in the Cinchona series. III. Azodyes derived from hydrocupreine and hydrocupreidine. J Am Chem Soc 41: 2131–2147

    Article  Google Scholar 

  • Hitchings GH, Burchall JJ (1965) Inhibition of folate biosynthesis and function as a basis for chemotherapy. Adv Enzymol 27: 417–468

    PubMed  CAS  Google Scholar 

  • Hitzenberger G, Spitzky KH (1962) Experimental studies of a new sulfonamide with depot character: sulfamethoxydiazine. Med Klin 57: 310–313

    PubMed  CAS  Google Scholar 

  • Ho RI, Corman L, Morse SA, Artenstein MS (1974) Alterations in dihydropteroate synthetase in cell free extracts of sulfanilamide resistant Neisseria meningitidisand Neisseria gonorrhoeae. Antimicrob Agents Chemother 5: 388–392

    PubMed  CAS  Google Scholar 

  • Horstmann H, Knott T, Scholtan W, Schraufstatter E, Walter A, Worffel U (1961) Beziehungen zwischen Struktur, Wirkung and protein-binding in der 2-Sulfanilamidopyrimidinreihe. Arzneim Forsch 11: 682–684

    CAS  Google Scholar 

  • Hotchkiss RD, Evans AH (1960) Fine structure of a genetically modified enzyme as revealed by relative affinities for modified substrate. Fed Proc 19: 912–925

    PubMed  CAS  Google Scholar 

  • Hucker HB (1970) Species difference in drug metabolism. Am Rev Pharmacol 10: 99–118

    Article  CAS  Google Scholar 

  • Irmscher K, Gabe D, Jahnke K, Scholtan W (1966) Untersuchungen zur SerumeiweiBbil- dung and zur renalen Elimination von isomeren Sulfonamiden (5-Sulfanilamido-3-at-hy1–1,2,4-thiodiazol and 5-Sulfanilamido-2-athyl-1,3,4-thiodiazol. Arzneim Forsch 16: 1019–1025

    CAS  Google Scholar 

  • Iwai K, Okinaka O (1968) The biosynthesis of folic acid compounds in plants. I. Enzymatic formation of dihydropteroic acid, dihydrofolic acid from 2-amino-4-hydroxy-6-substituted pteridine by cell free extracts of pea seedlings. J Vitaminol (Kyoto) 14: 160–169

    CAS  Google Scholar 

  • Jaenicke L, Chan PC (1960) Die Biosynthese der Folsäure. Angew Chem [Engl] 72: 752–753

    Article  CAS  Google Scholar 

  • Jardetzky O, Wade-Jardetzky NG (1965) The mechanism of the binding on sulfonamides to bovine serum albumin. Mol Pharmacol 1: 214–230

    PubMed  CAS  Google Scholar 

  • Joyner LP, Davies SFM, Kendall SB (1963) Chemotherapy of coccidiosis. In: Schnitzer RJ, Hawking F (eds) Experimental chemotherapy. Academic Press, New York, p445

    Google Scholar 

  • Kakemi K, Arita T, Koizumi T (1965) Absorption and excretion of drugs. XXIII. Some pharmacokinetic aspects of absorption and excretion of sulfonamides 5. Acetylation of sulfonamides. Yakuzaigaku 25: 22–2

    CAS  Google Scholar 

  • Kendall SB (1950) A comparison of the efficacy of sulphamethazine and sulphaquinazoline in the control of experimentally induced caecal coccidiosis in chicks. Vet Record 62: 381–382

    Article  CAS  Google Scholar 

  • Kendall SB, Joyner LP (1958) Potentiation of the coccidiostatic effects of sulphadimidine by five different folic acid antagonists. Vet Record 70: 632–634

    CAS  Google Scholar 

  • Koizumi T, Arita T, Kakemi K (1964) Absorption and excretion of drugs. XXI. Some pharmacokinetic aspects of absorption and excretion of sulfonamides. 3. Excretion from the kidney. Chem Pharm Bull (Tokyo) 12: 428–432

    CAS  Google Scholar 

  • Krüger-Thiemer E (1966) Die Lösung pharmakologischer Probleme durch Rechenautomaten. Arzneim Forsch 16: 1431–1442

    Google Scholar 

  • Krüger-Thiemer E, Wempe E, Töpfor M (1965) Die antibakterielle Wirkung des nicht eiweißgebundenen Anteils der Sulfanilamide im menschlichen Plasmawasser. Arzneim Forsch 15: 1309–1317

    Google Scholar 

  • Kuhn R, Schwartz K (1941) Isolation of the growth-promoting substance H from yeast. Chem Ber 74 B: 1617–1624

    CAS  Google Scholar 

  • Kurnosova LM, Lenkevich MM (1964) Mode of action of sulfonamides on trachoma virus. Acta Virol (Praha) 8: 350–358

    CAS  Google Scholar 

  • Lampen JO, Jones MJ (1946) The antagonism of sulfonamide inhibition of certain lactobacilliand enterococciby pteroylglutamic acid and related compounds. J Biol Chem 166: 435–448

    PubMed  CAS  Google Scholar 

  • Lampen JO, Jones MJ (1947) The growth-promoting and antisulfonamide activity of paminobenzoicacid, pteroylglutamic acid, and related compounds for L. arabinosusand Strept. plantarum. J Biol Chem 170: 133–146

    CAS  Google Scholar 

  • Landy M, Larkum NW, Oswald EJ, Streightoff F (1943) Increased synthesis ofp-aminobenzoic acid associated with the development of resistance in Staph. aureus. Science 97: 265–267

    Article  PubMed  CAS  Google Scholar 

  • Lascelles J, Woods DD (1952) The synthesis of folic acid by Bacterium coliand Staphylococcus aureusand its inhibition by sulphonamides. Br J Exp Pathol 33: 288–303

    PubMed  CAS  Google Scholar 

  • Lehr D (1957) Clinical toxicity of sulfonamides. Ann NY Acad Sci 9: 417–447

    Article  Google Scholar 

  • Levaditi C (1941) Woods phenomenon and N-containing sulfonamides, sulfoxides, and sulfones. C R Soc Biol 135: 1109–1111

    CAS  Google Scholar 

  • Levine PP (1939) The effect of sulfanilamide on the course of experimental avian coccidiosis. Cornell Vet 29: 309–320

    CAS  Google Scholar 

  • Levine PP (1941) The coccidiostatic effect of sulfaguanidine. Cornell Vet 31: 107–112

    CAS  Google Scholar 

  • Lockwood JS, Coburn AF, Stokinger HE (1938) Studies on the mechanism of the action of sulfanilamide. JAMA 111: 2259–2264

    Article  Google Scholar 

  • Macleod CM (1940) The inhibition of the bacteriostatic action of sulfonamide drugs by substances of animal and bacterial origin. J Exp Med 72: 217–232

    Article  PubMed  CAS  Google Scholar 

  • Maier J, Riley E (1942) Inhibition of antimalarial action of sulfonamides by p-aminobenzoic acid. Proc Soc Exp Biol Med 50: 152–154

    CAS  Google Scholar 

  • Marshall EK Jr (1937) Determination of sulfanilamide in blood and urine. J Biol Chem 122: 263–273

    CAS  Google Scholar 

  • Martin BK (1965) Potential effects of the plasma proteins on drug distribution. Nature 207: 274–276

    Article  PubMed  CAS  Google Scholar 

  • McCallum FO, Findlay GM (1938) Chemotherapeutic experiments on the virus of Lymphogranuloma inguinale in the mouse. Lancet II: 136–138

    Article  Google Scholar 

  • McCullough JL, Maren TH (1974) Dihydropteroate synthetase from Plasmodium berghei. Isolation, properties, and inhibition by dapsone and sulfadiazine. Mol Pharmacol 10: 140–145

    PubMed  CAS  Google Scholar 

  • Mcllwain H (1942) Correlation of drug action in vitro and in vivo through specific antagonists: Sulfanilamide and p-aminobenzoate. Br J Exp Pathol 23: 265–271

    Google Scholar 

  • Mietzsch F (1938) The chemotherapy of bacterial infections. Chem Ber 71 A: 15–28

    CAS  Google Scholar 

  • Mietzsch F, Klarer J (1935) Verfahren zur Herstellung von Azoverbindungen. Deutsches Reichspatent 607: 537

    Google Scholar 

  • Miller AK (1944) Folic acid and biotin synthesis by sulphonamide-sensitive and sulphonamide-resistant strains of E. coli. Proc Soc Exp Biol Med 57: 151–153

    CAS  Google Scholar 

  • Miller AK, Bruno P, Berglund RM (1947) The effect of sulfathiazole on the in vitro synthesis of certain vitamins by E. coli. J Bacteriol 54: 9

    PubMed  CAS  Google Scholar 

  • Miller GH, Doukas PH, Seydel JK (1972) Sulfonamide structure-activity relationship in a cell-free system. Correlation of inhibition of folate synthesis with antibacterial activity and physicochemical parameters. J Med Chem 15: 700–706

    Article  PubMed  CAS  Google Scholar 

  • Mitchell HK, Snell EE, Williams RJ (1941) The concentration of folic acid. J Am Chem Soc 63: 22–84

    Article  Google Scholar 

  • Mitsuda H, Suzuki Y (1968) Pteridines in plants. III. Biogenesis of folic acid in green leaves; inhibitors acting on the biosynthetic pathway for the formation of dihydropteroic acid from guanylic acid. J Vitaminol (Kyoto) 14: 106–120

    CAS  Google Scholar 

  • Mitsuhashi S, Inoue K, Inoue M (1977) Nonconjugative plasmids encoding sulfanilamide resistance. Antimicrob Agents Chemother 12: 418–422

    PubMed  CAS  Google Scholar 

  • Morgan HR (1948) Studies on the relationship of pteroylglutamic acid to the growth of Psittacosisvirus (strain 6 BC). J Exp Med 88: 285–294

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi I, Wada S (1968) Protein bindings. IV. Relations of an index for electronic structure to binding constant with serum albumin and bacteriostatic activities of sulfonamides. Chem Pharm Bull (Tokyo) 16: 734–738

    CAS  Google Scholar 

  • Moriguchi I, Wada S, Nishizawa T (1968) Protein bindings. III. Binding of sulfonamides to bovine serum albumin. Chem Pharm Bull (Tokyo) 16: 601–605

    CAS  Google Scholar 

  • Morrison NE (1968) Sulfone resistant states (Abstr 199). Int J Lepr 36: 652

    Google Scholar 

  • Moulder JW (1962) The biochemistry of intracellular parasitism. University of Chicago Press, Chicago, p 105

    Google Scholar 

  • Nagate N, Matsuhisa I, Inoue K, Mitsuhashi S (1978) Plasmid-mediated sulfanilamide resistance. Microbiol Immunol 22: 367–375

    PubMed  CAS  Google Scholar 

  • Nichol CA, Anton AH, Zakrzewski SF (1955) A labile precursor of citrovorum factor. Science 121: 275–279

    Article  PubMed  CAS  Google Scholar 

  • Nichols RL, Jones WF Jr, Finland M (1956) Sulfamethoxypyridazine: preliminary observations on absorption and excretion of a new long-acting antibacterial sulfonamide. Proc Soc Exp Biol Med 92: 637–640

    PubMed  CAS  Google Scholar 

  • Nimmo-Smith RH, Lascelles J, Woods DD (1948) Synthesis of folic acid by Streptobac- terium plantarumand its inhibition by sulfonamides. Br J Exp Pathol 29: 264–281

    PubMed  CAS  Google Scholar 

  • Nogami H, Hasegawa A, Hanano M, Imaoka K (1968) Absorption and excretion of drugs. XII. Pharmacokinetic studies on urinary excretion of sulfonamides. Yakugaku Zashi 88: 893–899

    CAS  Google Scholar 

  • Okinaka O, Iwai K (1969) Radioassay for dihydropteroate synthesizing enzyme activity. Anal Biochem 31: 174–182

    Article  PubMed  CAS  Google Scholar 

  • Ortiz PJ (1970) Dihydrofolate and dihydropteroate synthesis by partially purified enzymes from wild-type and sulfonamide-resistant pneumococci. Biochemistry 9:355–361

    Article  PubMed  CAS  Google Scholar 

  • Osborn MJ, Huennekens FM (1958) Enzymatic reduction of dihydrofolic acid. J Biol Chem 233: 969–974

    PubMed  CAS  Google Scholar 

  • Pato ML, Brown GM (1963) Mechanisms of resistance of E. colito sulfonamides. Arch Biochem Biophys 103: 443–448

    Article  PubMed  CAS  Google Scholar 

  • Pearson JMH, Petit JMS, Rees RJW (1968) Studies on sulfone resistance in leprosy. 3. A case of partial resistance. Int J Lepr 36: 171–178

    CAS  Google Scholar 

  • Peters W (1974) Recent advances in antimalarial chemotherapy and drug resistance. Adv Parasitol 12: 69–114

    Article  PubMed  CAS  Google Scholar 

  • Pfiffner JJ, Binkley SB, Bloom ES, Brown RA, Bird OD, Emmett AD, Hogan AG, O’Dell BL (1943) Isolation of the antianemia factor (vit Bc) in crystalline form from liver. Science 97: 404–405

    Article  PubMed  CAS  Google Scholar 

  • Pfiffner JJ, Binkley SB, Bloom ES, O’Dell BL (1947) Isolation and characterisation of vit Bc from liver and yeast. Occurrence of an acid-labile chick antianaemia factor in liver. J Am Chem Soc 69: 1476–1487

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan SP, Basu PC, Singh H, Singh N (1962) Studies on the toxicity and action of diaminodiphenylsulfone (DDS) in avian and simian malaria. Bull WHO 27: 213–221

    PubMed  CAS  Google Scholar 

  • Ramakrishnan SP, Basu PC, Singh N, Wattal BL (1963) A study on the joint action of diaminodiphenylsulfone (DDS) and pyrimethamine in the sporogony cycle of plasmodium gallinaceum. Potentiation of the sporontocidal activity of pyrimethamine by DDS. Indian J Malariol 17: 141–148

    PubMed  CAS  Google Scholar 

  • Rastelli A, De Beneditti PG, Battistuzzi GA, Albasini A (1975) The role of anionic, imidic and amidic forms in structure-activity relationships. Correlation of electronic indices and bacteriostatic activity in sulfonamides. J Med Chem 18: 963–967

    Article  PubMed  CAS  Google Scholar 

  • Ratner S, Blanchard M, Coburn AF, Green DE (1944) Isolation of a peptide of p-aminobenzoic acid from yeast. J Biol Chem 155: 689–690

    CAS  Google Scholar 

  • Reber H, Rutishauser G, Tholen H (1964) Untersuchungen am Menschen mit Sulfamethoxazol und Sulforthodimothoxin. In: Kuemmerle HP, Preziosi (eds) Third Int Congr Chemother Stuttgart 1963, vol 1. Thieme, Stuttgart, p 648

    Google Scholar 

  • Reynolds JJ, Brown GM (1964) The biosynthesis of folic acid. IV. Enzymatic synthesis of dihydrofolic acid from guanine and ribose compounds. J Biol Chem 239: 317–325

    PubMed  CAS  Google Scholar 

  • Richey DP, Brown GM (1969) The biosynthesis of folic acid IX Purification and properties of the enzymes required for the formation of dihydropteroic acid. J Biol Chem 244: 1582–1592

    PubMed  CAS  Google Scholar 

  • Rieder J (1963) Physikalisch-chemische und biologische Untersuchungen an Sulfonamiden. Arzneim Forsch 13:81–88,89–95, 95–103

    Google Scholar 

  • Rist N, Bloch F, Hamon V (1940) Inhibiting action of sulfonamide and of a sulfone on the multiplication in vitro and in vivo of tubercle bacillus. Ann Inst Pasteur 64: 203–237

    CAS  Google Scholar 

  • Robinowitz JC, Himes RH (1960) Folic acid coenzymes. Fed Proc 19: 963–970

    Google Scholar 

  • Roland S, Ferone R, Harvey RJ, Styles YL, Morrison RW (1979) The characteristics and significance of sulfonamides as substrates for E. colidihydropteroate synthase. J Biol Chem 254: 10337–10345

    PubMed  CAS  Google Scholar 

  • Rubbo SD, Gillepsie JM (1940) p-Aminobenzoic acid as a bacterial growth factor. Nature 146:838–839

    Google Scholar 

  • Rubbo SD, Maxwell M, Fairbridge RA, Gillespie JM (1941) The bacteriology, growth factor requirements and fermentation reactions of Clostridium acctobutylicumWeizman. Aust J Exp Biol Med Sci 19: 185–198

    Article  CAS  Google Scholar 

  • Sabin AB, Warren J (1941) Therapeutic effect of the sulfonamides on infection by an intracellular protozoan (Toxoplasma). J Bacteriol 41: 80

    Google Scholar 

  • Sauberlich HE, Baumann CA (1948) A factor required for the growth of Leuconostoc citrovorum. J Biol Chem 176: 165–173

    PubMed  CAS  Google Scholar 

  • Schmelkes FC, Wyss O, Marks HC, Ludwig BJ, Stranskov FB (1942) Mechanism of sulfonamide action. I. Acidic dissociation and antibacterial effect. Proc Soc Ex Biol Med 50: 145–148

    CAS  Google Scholar 

  • Schnaare RS, Martin AN (1965) Quantum chemistry in drug design. J Pharm Sci 54: 1707–1713

    Article  CAS  Google Scholar 

  • Scholtan W (1963) The protein binding of long acting sulfonamides. Chemotherapia 6: 180–189

    Article  PubMed  CAS  Google Scholar 

  • Scholtan W (1968) Die hydrophobe Bindung der Pharmaka an Human-Albumin und Ribonucleinsäure. Arzneim Forsch 18: 505–517

    CAS  Google Scholar 

  • Schwenker G (1962) Infrared and nuclear magnetic resonance spectrophotometric study of the structure of sulfanil-guanidine. Arch Pharm (Weinheim) 295: 753–758

    Article  CAS  Google Scholar 

  • Seeler AO, Graessle O, Dusenbery ED (1943) The effect of pAB on the chemotherapeutic activity of sulfonamides in Lymphogranuloma venereumand in duck malaria. J Bacteriol 45: 205–209

    PubMed  CAS  Google Scholar 

  • Selbie FR (1940) The inhibition of the action of sulfanilamide in mice by p-aminobenzoic acid. Br J Exp Pathol 21: 90–93

    CAS  Google Scholar 

  • Seydel JK (1966) Prediction of in vitro activity of sulfonamides, using Hammett constants or spectrophotometric data of the basic amines for calculation. Mol Pharmacol 2: 259–265

    PubMed  CAS  Google Scholar 

  • Seydel JK (1968) Molecular basis for the action of chemotherapeutic drugs: structure-activity studies on sulfonamides. In: Ariens EJ (ed) Physico-chemical aspects of drug action. Pergamon, New York, p 169

    Google Scholar 

  • Seydel JK (1971a) Prediction of the in vitro activity of sulfonamides synthesised from simple amines by use of electronic data obtained from simple amines. J Med Chem 14: 724–729

    Article  CAS  Google Scholar 

  • Seydel JK (1971b) Physicochemical approaches to the rational development of new drugs. In: Ariens EJ (ed) Drug design. Academic Press, New York, p 343

    Google Scholar 

  • Seydel JK, Wempe E (1964) Physikalisch-chemische und bakteriologische Untersuchungen an N’-acylierten Sulfamiden. Arzneim Forsch 14: 705–708

    CAS  Google Scholar 

  • Seydel JK, Krüger-Thiemer E, Wempe E (1960) Relation between antibacterial activity and IR of sulfanilamide. Z Naturforsch [C] 15 B: 628–641

    CAS  Google Scholar 

  • Shepard CC, Tolentino JG, McRae DN (1968) The therapeutic effect of 4,4’-diacetyldi-aminodiphenylsulfone (DADDS) in leprosy. Am J Trop Med Hyg 17: 192–201

    PubMed  CAS  Google Scholar 

  • Shiota T (1959) Enzymic synthesis of folic acid-like compounds by cell-free extracts of Lactobacillus arabinosus. Arch Biochem Biophys 80: 155–161

    Article  CAS  Google Scholar 

  • Shiota T, Disraely MN (1961) The enzymic synthesis of dihydrofolate from 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine and p-aminobenzoylglutamate by extracts of Lactobacillus plantarum. Biochim Biophys Acta 52: 467–473

    Article  PubMed  CAS  Google Scholar 

  • Shiota T, Disraely MN, McCann MP (1964) The enzymatic synthesis of folate-like compounds from hydroxymethyldihydropteridine pyrophosphate. J Biol Chem 239: 2259–2266

    PubMed  CAS  Google Scholar 

  • Shiota T, Baugh CM, Jackson R, Dillard R (1969) The enzymatic synthesis of hydroxymethyl-dihydrofolate. Biochemistry 8: 5022–5028

    Article  PubMed  CAS  Google Scholar 

  • Shive W, Ackerman WC, Gordon M, Getzendaner ME, Eakin RE (1947) 5(4)-Amino-4(5)-imidazolecarboxamide, a precursor of purines. J Am Chem Soc 69:725–726

    Article  PubMed  CAS  Google Scholar 

  • Sköld O (1976) R-Factor-mediated resistance to sulfonamides by a plasmid-borne drug resistance dihydropteroate synthase. Antimicrob Agents Chemother 9: 49–54

    PubMed  Google Scholar 

  • Snell EE, Mitchell HK (1943) Some sulfonamide antagonists as growth factors for lactic acid bacteria. Arch Biochem 1: 93–101

    Google Scholar 

  • Snell EE, Peterson WH (1940) Growth factors for bacteria. X. Additional factors required by certain lactic acid bacteria. J Bact 39: 273–284

    PubMed  CAS  Google Scholar 

  • Stamp TC (1939) Bacteriostatic action of sulphanilamide in vitro. Lancet II: 10–17

    Article  CAS  Google Scholar 

  • Stetten MR, Fox CL (1945) An amine formed by bacteria during sulphonamide bacteriostasis. J Biol Chem 161: 333–349

    PubMed  CAS  Google Scholar 

  • Strauss AM, Kliggman AM, Pillsbury DM (1951) The chemotherapy of actinomycosis and nocardiosis. Am Rev Tuberc Pulm Dis 63: 441–448

    CAS  Google Scholar 

  • Struller T (1968) Progress in sulfonamide research. Prog Drug Res 12: 389–457

    PubMed  CAS  Google Scholar 

  • Tabor H, Wyngaarden L (1954) The enzymatic formation of formimino-tetrahydrofolic acid, 5,10-methylenetetrahydrofolic acid and 10-formyltetrahydrofolic acid in the metabolism of formimino-glutamic acid. J Biol Chem 234: 1830–1846

    Google Scholar 

  • Tarizzo ML (1972) Chemotherapy of trachoma. WHO Chronicle 26: 99–101

    PubMed  CAS  Google Scholar 

  • Thompson PE (1967) Antimalarial studies on 4,4’-diaminodiphenyl sulfone (DDS) and repository sulfones in experimental animals. Int J Lepr 35: 605–615

    CAS  Google Scholar 

  • Thompson PE, Olszewski B, Waitz JA (1965) Laboratory studies on the repository antimalarial activity of 4,4’-diacetyl-aminodiphenylsulfone, alone and mixed with cycloguanil pamoate (CI-501). Am J Trop Med Hyg 14: 343–353

    PubMed  CAS  Google Scholar 

  • Toth-Martinez RJ, Papp S, Dinya Z, Hernadi FJ (1975) New vistas for p-aminobenzoate participation in the biosynthesis of dihydrofolate: a tentative model of the tetrahydrofolate multienzyme complex. Biosystems 7: 172–182

    Article  PubMed  CAS  Google Scholar 

  • Trefouël J, Trefouël MMe J, Nitti F, Bovet D (1935) Activite du p-aminophenylsulfamide sur les infections streptococciques experimentales de la souris et du lapin. C R Soc Biol 120: 756–758

    Google Scholar 

  • Tripod J, Neipp L, Padowtz W, Sackmann W (1960) Relations experimentales entre l’action curative et les taux sanguins de sulfamides, en particulier du sulfaphenazol. Antibiot Chemotherapia 8: 17–31

    CAS  Google Scholar 

  • Tschesche R (1947) A new explanation of the mode of action of the sulfonamides. Z Naturforsch [C] 2b: 10–11

    CAS  Google Scholar 

  • Vieira E, Shaw E (1961) The utilisation of purines in the biosynthesis of folic acid. J Biol Chem 236: 2507–2510

    PubMed  CAS  Google Scholar 

  • Walter RD, Königk E (1974) Biosynthesis of folic acid compounds in plasmodia; purification and properties of 7,8-dihydropteroate synthesising enzyme from Plasmodium chabaudi. Hoppe Seylers Z Physiol Chem 355: 431–437

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T (1963) Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev 27: 87–115

    PubMed  CAS  Google Scholar 

  • Weinstein L, Madoff MA, Samet CM (1960) The sulfonamides. Engl J Med 263:793–800, 842–849, 900–907

    Google Scholar 

  • Weisman RA, Brown GM (1964) The biosynthesis of folic acid. V. Characteristics of the enzyme system that catalyses the synthesis of dihydropteroic acid. J Biol Chem 239: 326–331

    PubMed  CAS  Google Scholar 

  • White PJ, Woods DD (1965) The synthesis ofp-aminobenzoic acid and folic acid by staphylococci sensitive and resistant to sulphonamides. J Gen Microbiol 40: 243–253

    PubMed  CAS  Google Scholar 

  • Williams RT, Parke DV (1964) Metabolic fate of drugs. Ann Rev Pharmacol 4: 85–114

    Article  CAS  Google Scholar 

  • Wise EM Jr, Abou-Donia MM (1975) Sulfonamide resistance mechanism in E. coli: R plasmids can determine sulfonamide-resistant dihydropteroate syntheses. Proc Natl Acad Sci USA 72: 2621–2625

    CAS  Google Scholar 

  • Wolf B, Hotchkiss RD (1963) Genetically modified folic acid synthesising enzymes of pneumococcus. Biochemistry 2: 145–150

    Article  PubMed  CAS  Google Scholar 

  • Woods DD (1940) Relation of p-aminobenzoic acid to mechanism of action of sulphanilamide. Br J Exp Pathol 21: 74–90

    CAS  Google Scholar 

  • Woods DD (1954) Metabolic relations between p-aminobenzoic and folic acids in microorganisms. In: Chemistry and biology of pteridines, CIBA Foundation Symposium. Little Brown, Boston, Mass, p 220

    Google Scholar 

  • Yamazaki M, Aoki M, Kamada A (1968) Biological activities of drugs. III. Physicochemical factors affecting the excretion of sulfonamides in rabbits. Chem Pharm Bull (Tokyo) 16: 707–714

    CAS  Google Scholar 

  • Yamazaki M, Kakeya N, Morishita T, Kamada A, Aoki A (1970) Biological activity of drugs. X. Relation of structure to the bacteriostatic activity of sulfonamides (1). Chem Pharm Bull (Tokyo) 18: 702–707

    CAS  Google Scholar 

  • Ziegler-Gunder I, Simon H, Wacker A (1956) Metabolism of guanine-2–14C and hypoxanthine-8–14C in amphibians. Zentral Naturforsch IIb: 82–85

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anand, N. (1983). Sulfonamides: Structure-Activity Relationships and Mechanism of Action. In: Hitchings, G.H. (eds) Inhibition of Folate Metabolism in Chemotherapy. Handbook of Experimental Pharmacology, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81890-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81890-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81892-9

  • Online ISBN: 978-3-642-81890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics