Sulfonamides: Structure-Activity Relationships and Mechanism of Action

  • N. Anand
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 64)

Abstract

The discovery of the antibacterial activity of prontosil (1) in the early 1930 s (Domagk 1935, 1957), the first effective chemotherapeutic agent to be employed for the systemic treatment of bacterial infection in humans (Foerster 1933), was the beginning of the present era of chemotherapy. The history of the development of sulfonamides as a major class of chemotherapeutic agents is one of the most fascinating chapters in drug research, highlighting the roles of skilful planning and serendipity. The synthesis of prontosil (1) was a carry-over of the interest generated in dyes in general as possible antimicrobials as a result ofE hrlich’s studies on the relationship between selective staining by dyes and their antiprotozoal activity, and in the sulfonamide group as contributory to fastness for acid wool dyes as a result of the work of Horlein, Dressel and Kethe of I.G. Farbenindustrie (see Mietzsch 1938), which led Mietzsch and Klarer (1935) to synthesize a group of azo dyes containing a sulfonamide group, which included prontosil. The lack of correlation between in vitro and in vivo antibacterial tests prompted Domagk (1935) to resort to in vivo testing, a very fortunate decision, since otherwise the fate of sulfonamides might have been different. In fact, similar dyes had been synthesized almost a decade earlier, such as p-sulfonamidobenzeneazodihydrocupreine (Heidelberger and Jacobs 1919), but tested in vitro, and thus understandably showing rather poor activity.

Keywords

Lactobacillus Purine Plasmodium Mycobacterium Proteus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson RH, Bridges JW, Kibby MR, Walker SR, Williams RT (1970) The fate of sulfadimethoxine in primates compared with other species. Biochem J 118: 41–45PubMedGoogle Scholar
  2. Akiba T, Yokota T (1962) Studies on the mechanism of transfer of drug resistance in bacteria 18. Incorporation of 35S-sulfathiazole into cells of the multiple resistant strain and artificial sulfonamide resistant strain of E. coli. Med Biol 63: 155–159Google Scholar
  3. Albert A (1954) The transformation of purines into pteridines. Biochem J 57: XGoogle Scholar
  4. Anand N (1979) Sulfonamides and sulfones. In: Wolff ME (ed) Burger’s medicinal chemistry, 4th edn, Part II. Wiley and Sons, New York, p 1Google Scholar
  5. Angier RB, Boothe JH, Hutchings BL, Mowat JH, Semb J, Stokstad ELR, Subba-Row Y, Waller CW, Cosulich DB, Fahrenbach MJ, Hultquist ME, Kuh E, Northey EH, Seeger DR, Sickels JP, Smith JM Jr (1946) Synthesis of a compound identical with the L. caseifactor isolated from liver. Science 103: 667–669CrossRefGoogle Scholar
  6. Apt W (1970) Tratamiento de la toxoplasmosis (in Spanish). Bol Chil Parasitol 25: 65–68PubMedGoogle Scholar
  7. Archibald HM, Ross CM (1960) Preliminary report on the effect of diaminodiphenylsulphone on malaria in Northern Nigeria. J Trop Med Hyg 63: 25–27PubMedGoogle Scholar
  8. Basu PC, Singh NN, Singh N (1964) Potentiation of activity of diphenylsulfone and pyrimethamine against P. gallinaceumand P. cynomolgi bastianellii. Bull WHO 31: 699–703PubMedGoogle Scholar
  9. Bell PH, Roblin RO Jr (1942) Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide type compounds. J Am Chem Soc 64: 2905–2917CrossRefGoogle Scholar
  10. Biagi GL, Barbaro AM, Guerra MC, Forti GC, Fracasso ME (1974) Relationship between it and Rm values of sulfonamides. J Med Chem 17: 28–33PubMedCrossRefGoogle Scholar
  11. Biocca E (1943) Quimioterapia sulfonica da toxoplasmose (in Portuguese). Arq Inst Biol (Sao Paulo) 27: 7–10Google Scholar
  12. Bishop A (1959) Drug resistance in protozoa. Biol Rev 34: 445–500Google Scholar
  13. Bishop A (1963) Some recent developments in the problem of drug resistance in malaria. Parasitology 53: 10 pGoogle Scholar
  14. Blanchard KC (1941) The isolation of p-aminobenzoic acid from yeast. J Biol Chem 140: 919–926Google Scholar
  15. Bliss EA, Long PH (1941) Observations on the mode of action of sulfanilamide. The antibacteriostatic action of methionine. Bull Johns Hopkins Hosp 69: 14–38Google Scholar
  16. Bock L, Miller GH, Schaper KJ, Seydel JK (1974) Sulfonamide structure activity relationships in a cell-free system 2 Proof for the formation of a sulfonamide-containing folate analog. J Med Chem 17: 23–28PubMedCrossRefGoogle Scholar
  17. Böhni E, Fust B, Reider J, Schaerer K, Havas L (1969) Comparative toxocological, chemotherapeutic, and pharmacokinetic studies with sulformethoxine and other sulfonamides in animals and man. Chemotherapy 14: 195–226PubMedCrossRefGoogle Scholar
  18. Boroff DA, Cooper A, Bullowa JGM (1942) Inhibition of sulfapyridine in human serum, exudates, and transudates. J Immunol 43: 341–348Google Scholar
  19. Bratton AC, Marshall EK Jr (1939) A new coupling component for sulphanilamide determination. J Biol Chem 128: 537–550Google Scholar
  20. Bretschneider H, Klotzer W, Spiteller G (1961) Zweitsynthese des 6-sulfanilamido-2,4-dimethoxypyrimidins and Synthese des 6-sulfanilamide-2-methoxy-4,5-dimethylpyrimidins. Monatsh Chemie 92: 128–134CrossRefGoogle Scholar
  21. Brown GM (1962) The biosynthesis of folic acid. Inhibition by sulfonamides. J Biol Chem 237: 536–540PubMedGoogle Scholar
  22. Brown GM (1971) The biosynthesis of pteridines. Adv Enzymol 35: 35–77PubMedGoogle Scholar
  23. Brown GM, Weisman RA, Molnar DA (1961) The biosynthesis of folic acid. I. Substrate and cofactor requirements for enzymatic synthesis by cell-free extracts of E. coli. J Biol Chem 236: 2534–2543Google Scholar
  24. Browne SG (1969a) The evaluation of present antileprosy compounds. Adv Pharmacol Chemother 7: 211–246CrossRefGoogle Scholar
  25. Browne SG (1969b) Dapsone-resistant M. lepraein a patient receiving dapsone in low doses. Int J Lepr 37: 296–301Google Scholar
  26. Brownlee G, Green AF, Woodbine M (1948) Sulphetrone. A chemotherapeutic agent for tuberculosis. Pharmacology and chemotherapy. Br J Pharmacol 3: 15–28Google Scholar
  27. Brueckner AH (1943) The effect of pH on sulphonamide activity. Yale J Biol Med 15: 813–821PubMedGoogle Scholar
  28. Bushby SRM, Woiwood AJ (1955) Excretion products of 4:4’-diaminodiphenylsulfone. Am Rev Tuberc Pulm Dis 72: 123–125Google Scholar
  29. Bushby SRM, Woiwood AJ (1956) The identification of the major diazotizable metabolite of 4:4’-diaminodiphenylsulphone in rabbit urine. Biochem J 63: 406–408PubMedGoogle Scholar
  30. Buttle GAH, Grey WH, Stephenson D (1936) Protection of mice against streptococcal and other infections byp-aminobenzene sulfonamide and related substances. Lancet I: 1286–1290CrossRefGoogle Scholar
  31. Camerino B, Palamidessi G (1960) Derivati della parazina II. Sulfonamdopir (in Italian). Gazz Chim Ital 90: 1802–1815Google Scholar
  32. Coggeshall LT (1938) The cure of P. knowlesimalaria in Rhesus monkeys with sulfanilamide and their susceptibility to reinfection. Am J Trop Med Hyg 18: 715–721Google Scholar
  33. Coggeshall LT, Maier J, Best CA (1941) The effectiveness of two new types of chemotherapeutic agents in malaria: sodium p,p’-diaminodiphenylsulphone-N,N’-di-dextrosesulfonate (Promin) and 2-sulfanilamidopyrimidine (sulfadiazine). JAMA 117: 1077–1081CrossRefGoogle Scholar
  34. Colebrook L, Kenny M (1936) Treatment of human peripheral infections and of experimental infections in mice with prontosil. Lancet 1: 1279–1286CrossRefGoogle Scholar
  35. Connar RG, Ferguson TB, Sealy WC, Conant NF (1951) Report of a single case with recovery. J Thorac Surg 22: 424–426PubMedGoogle Scholar
  36. Cowdry EV, Ruangsiri C (1941) Influence of promin, starch, and heptaldehyde in experimental leprosy in rats. Arch Pathol 32: 632–640Google Scholar
  37. Cowles PB (1942) Ionization and the bacteriostatic action of sulfonamides. Yale J Biol Med 14: 599–604PubMedGoogle Scholar
  38. Day PL, Langston WC, Darby WJ (1938) Failure of nicotinic acid to prevent nutritional cytopenia in the monkey. Proc Soc Exp Biol Med 38: 860–863Google Scholar
  39. Deininger R, Gutbrod H (1960) Die pharmakodynamische Wirkung des neun Sulfonamido, 2-(p-aminobenzol sulfonamido)-4,5-dimethyloxazole. Arzneim Forsch 10: 612–619Google Scholar
  40. Domagk G (1935) Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Dtsch Med Wochenschr 61: 250–253CrossRefGoogle Scholar
  41. Domagk G (1957) Twentyfive years of sulfonamide therapy. Ann NY Acad Sci 69: 380–384PubMedCrossRefGoogle Scholar
  42. Donovick R, Bayan A, Hamre D (1952) The reversal of the activity of antituberculous compounds in vitro. Am Rev Tuberc Pulm Dis 66: 219–227Google Scholar
  43. Ellard GA (1966) Absorption, metabolism and excretion of di-(p-aminophenyl)sulphone (Dapsone) and di(p-aminophenyl)-sulphoxide in man. Br J Pharmacol 26: 212–217Google Scholar
  44. Elslager EF (1974) New perspectives on the chemotherapy of malaria, filariasis and leprosy. Prog Drug Res 18: 99–172PubMedGoogle Scholar
  45. Elslager EF, Worth DF (1965) Repository antimalarial drugs: N,N’-diacetyl-4,4’-diamino-diphenylsulfone and related 4-acylaminodiphenylsulfones. Nature 206: 630–631PubMedCrossRefGoogle Scholar
  46. Eyles DE (1956) Newer knowledge of the chemotherapy of toxoplasmosis. Ann NY Acad Sci 64: 252–267CrossRefGoogle Scholar
  47. Eyles DE, Coleman N (1955) An evaluation of the curative effects of pyrimethamine and sulfadiazine, alone and in combination, on experimental mouse toxoplasmosis. Antibiot Chemother 5: 529–539Google Scholar
  48. Feldman WH, Hinshaw HC, Moses HE (1942) Promin in experimental tuberculosis. Am Rev Tuberc Pulm Dis 45: 303–308Google Scholar
  49. Ferone R (1973) The enzymic synthesis of dihydropteroate and dihydrofolate by Plasmodium berghei. J Protozool 20: 459–464PubMedGoogle Scholar
  50. Fildes P (1940) A rational approach to research in chemotherapy. Lancet I: 955–957CrossRefGoogle Scholar
  51. Findlay GM (1940) The action of sulfanilamide on the virus of Lymphogranuloma venereum. Br J Exp Pathol 21: 356–360Google Scholar
  52. Foernzler EC, Martin AN (1967) Molecular orbital calculations on sulfonamide molecules. J Pharm Sci 56: 608–615PubMedCrossRefGoogle Scholar
  53. Foerster R (1933) Sepsis im Anschluß an ausgehende Peritoritis. Heilung durch Streptozon. Zentral Haut Geschlechtskr 45: 549–550Google Scholar
  54. Fox CL Jr, Rose MM (1942) Ionisation of sulfonamides. Proc Soc Exp Biol Med 50: 142–145Google Scholar
  55. Friedkin M (1963) Enzymatic aspects of folic acid. Ann Rev Biochem 32: 185–214PubMedCrossRefGoogle Scholar
  56. Fujita T (1972a) Hydrophobic bonding of sulfonamide drugs with serum albumin. J Med Chem 15: 1049–1056CrossRefGoogle Scholar
  57. Fujita T (1972b) Substituent-effect analysis of the rates of metabolism and excretion of sulfonamide drugs. In: Gould RF (ed) Biological correlations — the Hansch approach. American Chemical Society, Washington DC, p 80Google Scholar
  58. Fujita T, Hansch C (1967) Analysis of the structure-activity relationship of the sulfonamide drugs using substituent constants. J Med Chem 10: 991–1000PubMedCrossRefGoogle Scholar
  59. Fuller AT (1937) Is p-aminobenzenesulfonamide an active agent in prontosil therapy? Lancet II: 194–198CrossRefGoogle Scholar
  60. Fust B, Böhni E (1959) Tolerance and antibacterial properties of 2,4-dimethoxy-6-sulfanil-amido-1,3-diazine (Madribon) and some other sulfonamides. Antiobiot Med 6 (I): 3–10Google Scholar
  61. Fust B, Bühni E (1962) Vergleichende experimentelle Untersuchungen mit 5-Methyl-1,3-Sulfanilamido-Isoxazol, anderen Sulfanilamiden and Antibiotica. Schweiz Med Wochenschr 92:1599–1604PubMedGoogle Scholar
  62. Garrett ER, Mielck JB, Seydel JK, Kessler HJ (1969) Kinetics and mechanisms of action of drugs on microorganisms. VIII. Quantification and prediction of the biological activities of m-and p-substituted N’-phenylsulfanilamides by microbial kinetics. J Med Chem 12: 740–745PubMedCrossRefGoogle Scholar
  63. Garrod LP, James DG, Lewis AAG (1969) The synergy of trimethoprim and sulfonamides. Postgrad Med J [Suppl] 45: 1–84Google Scholar
  64. Geimo P (1908) Liber Sulfamide der p-Amidobenzolsulphonsäure. J Prakt Chem 77: 369–382Google Scholar
  65. Gordon GR, Peters JH, Gelben R, Levy L (1970) Metabolic disposition of dapsone (4,4’-diaminodiphenylsulfone) in animals and man. Proc West Pharmacol Soc 13: 17–24Google Scholar
  66. Gots JS (1953) Occurrence of 4-amino-5-imidazolecarboxamide as a pentose derivative. Nature 172: 256–257PubMedCrossRefGoogle Scholar
  67. Green HN (1940) The mode of action of sulfanilamide. Br J Exp Pathol 21: 38–64Google Scholar
  68. Greenberg GR (1954) A formylation cofactor. J Am Chem Soc 76: 1458–1459CrossRefGoogle Scholar
  69. Greenberg J (1949) The antimalarial activity of 2,4-diamino-6,7-diphenylpterin: its potentiation by sulphadiazine and inhibition by pteroylglutamic acid. J Pharmacol Exp Ther 97: 484–487PubMedGoogle Scholar
  70. Greenberg J, Richeson EM (1950) Potentiation of the antimalarial activity of sulfadiazine by 2,4-diamino-5-aryloxypyrimidines. J Pharmacol Exp Ther 99: 111–119Google Scholar
  71. Greenberg J, Richeson EM (1951) Effect of 2,4-diamino-5-(p-chlorophenoxy)-6-methylpyrimidine and 2,4-diamino-6,7-diphenylpteridine on chlorguanide-resistant strain of Plasmodium gallinaceum. Proc Soc Exp Biol Med 77: 174–176PubMedGoogle Scholar
  72. Griffin MJ, Brown MJ (1964) The biosynthesis of folic acid. III. Enzymatic formation of dihydrofolic acid from dihydropteroic acid and of tetrahydropteroylpolyglutamic acid compound from tetrahydrofolic acid. J Biol Chem 239: 310–316PubMedGoogle Scholar
  73. Heidelberger M, Jacobs WA (1919) Synthesis in the Cinchona series. III. Azodyes derived from hydrocupreine and hydrocupreidine. J Am Chem Soc 41: 2131–2147CrossRefGoogle Scholar
  74. Hitchings GH, Burchall JJ (1965) Inhibition of folate biosynthesis and function as a basis for chemotherapy. Adv Enzymol 27: 417–468PubMedGoogle Scholar
  75. Hitzenberger G, Spitzky KH (1962) Experimental studies of a new sulfonamide with depot character: sulfamethoxydiazine. Med Klin 57: 310–313PubMedGoogle Scholar
  76. Ho RI, Corman L, Morse SA, Artenstein MS (1974) Alterations in dihydropteroate synthetase in cell free extracts of sulfanilamide resistant Neisseria meningitidisand Neisseria gonorrhoeae. Antimicrob Agents Chemother 5: 388–392PubMedGoogle Scholar
  77. Horstmann H, Knott T, Scholtan W, Schraufstatter E, Walter A, Worffel U (1961) Beziehungen zwischen Struktur, Wirkung and protein-binding in der 2-Sulfanilamidopyrimidinreihe. Arzneim Forsch 11: 682–684Google Scholar
  78. Hotchkiss RD, Evans AH (1960) Fine structure of a genetically modified enzyme as revealed by relative affinities for modified substrate. Fed Proc 19: 912–925PubMedGoogle Scholar
  79. Hucker HB (1970) Species difference in drug metabolism. Am Rev Pharmacol 10: 99–118CrossRefGoogle Scholar
  80. Irmscher K, Gabe D, Jahnke K, Scholtan W (1966) Untersuchungen zur SerumeiweiBbil- dung and zur renalen Elimination von isomeren Sulfonamiden (5-Sulfanilamido-3-at-hy1–1,2,4-thiodiazol and 5-Sulfanilamido-2-athyl-1,3,4-thiodiazol. Arzneim Forsch 16: 1019–1025Google Scholar
  81. Iwai K, Okinaka O (1968) The biosynthesis of folic acid compounds in plants. I. Enzymatic formation of dihydropteroic acid, dihydrofolic acid from 2-amino-4-hydroxy-6-substituted pteridine by cell free extracts of pea seedlings. J Vitaminol (Kyoto) 14: 160–169Google Scholar
  82. Jaenicke L, Chan PC (1960) Die Biosynthese der Folsäure. Angew Chem [Engl] 72: 752–753CrossRefGoogle Scholar
  83. Jardetzky O, Wade-Jardetzky NG (1965) The mechanism of the binding on sulfonamides to bovine serum albumin. Mol Pharmacol 1: 214–230PubMedGoogle Scholar
  84. Joyner LP, Davies SFM, Kendall SB (1963) Chemotherapy of coccidiosis. In: Schnitzer RJ, Hawking F (eds) Experimental chemotherapy. Academic Press, New York, p445Google Scholar
  85. Kakemi K, Arita T, Koizumi T (1965) Absorption and excretion of drugs. XXIII. Some pharmacokinetic aspects of absorption and excretion of sulfonamides 5. Acetylation of sulfonamides. Yakuzaigaku 25: 22–2Google Scholar
  86. Kendall SB (1950) A comparison of the efficacy of sulphamethazine and sulphaquinazoline in the control of experimentally induced caecal coccidiosis in chicks. Vet Record 62: 381–382CrossRefGoogle Scholar
  87. Kendall SB, Joyner LP (1958) Potentiation of the coccidiostatic effects of sulphadimidine by five different folic acid antagonists. Vet Record 70: 632–634Google Scholar
  88. Koizumi T, Arita T, Kakemi K (1964) Absorption and excretion of drugs. XXI. Some pharmacokinetic aspects of absorption and excretion of sulfonamides. 3. Excretion from the kidney. Chem Pharm Bull (Tokyo) 12: 428–432Google Scholar
  89. Krüger-Thiemer E (1966) Die Lösung pharmakologischer Probleme durch Rechenautomaten. Arzneim Forsch 16: 1431–1442Google Scholar
  90. Krüger-Thiemer E, Wempe E, Töpfor M (1965) Die antibakterielle Wirkung des nicht eiweißgebundenen Anteils der Sulfanilamide im menschlichen Plasmawasser. Arzneim Forsch 15: 1309–1317Google Scholar
  91. Kuhn R, Schwartz K (1941) Isolation of the growth-promoting substance H from yeast. Chem Ber 74 B: 1617–1624Google Scholar
  92. Kurnosova LM, Lenkevich MM (1964) Mode of action of sulfonamides on trachoma virus. Acta Virol (Praha) 8: 350–358Google Scholar
  93. Lampen JO, Jones MJ (1946) The antagonism of sulfonamide inhibition of certain lactobacilliand enterococciby pteroylglutamic acid and related compounds. J Biol Chem 166: 435–448PubMedGoogle Scholar
  94. Lampen JO, Jones MJ (1947) The growth-promoting and antisulfonamide activity of paminobenzoicacid, pteroylglutamic acid, and related compounds for L. arabinosusand Strept. plantarum. J Biol Chem 170: 133–146Google Scholar
  95. Landy M, Larkum NW, Oswald EJ, Streightoff F (1943) Increased synthesis ofp-aminobenzoic acid associated with the development of resistance in Staph. aureus. Science 97: 265–267PubMedCrossRefGoogle Scholar
  96. Lascelles J, Woods DD (1952) The synthesis of folic acid by Bacterium coliand Staphylococcus aureusand its inhibition by sulphonamides. Br J Exp Pathol 33: 288–303PubMedGoogle Scholar
  97. Lehr D (1957) Clinical toxicity of sulfonamides. Ann NY Acad Sci 9: 417–447CrossRefGoogle Scholar
  98. Levaditi C (1941) Woods phenomenon and N-containing sulfonamides, sulfoxides, and sulfones. C R Soc Biol 135: 1109–1111Google Scholar
  99. Levine PP (1939) The effect of sulfanilamide on the course of experimental avian coccidiosis. Cornell Vet 29: 309–320Google Scholar
  100. Levine PP (1941) The coccidiostatic effect of sulfaguanidine. Cornell Vet 31: 107–112Google Scholar
  101. Lockwood JS, Coburn AF, Stokinger HE (1938) Studies on the mechanism of the action of sulfanilamide. JAMA 111: 2259–2264CrossRefGoogle Scholar
  102. Macleod CM (1940) The inhibition of the bacteriostatic action of sulfonamide drugs by substances of animal and bacterial origin. J Exp Med 72: 217–232PubMedCrossRefGoogle Scholar
  103. Maier J, Riley E (1942) Inhibition of antimalarial action of sulfonamides by p-aminobenzoic acid. Proc Soc Exp Biol Med 50: 152–154Google Scholar
  104. Marshall EK Jr (1937) Determination of sulfanilamide in blood and urine. J Biol Chem 122: 263–273Google Scholar
  105. Martin BK (1965) Potential effects of the plasma proteins on drug distribution. Nature 207: 274–276PubMedCrossRefGoogle Scholar
  106. McCallum FO, Findlay GM (1938) Chemotherapeutic experiments on the virus of Lymphogranuloma inguinale in the mouse. Lancet II: 136–138CrossRefGoogle Scholar
  107. McCullough JL, Maren TH (1974) Dihydropteroate synthetase from Plasmodium berghei. Isolation, properties, and inhibition by dapsone and sulfadiazine. Mol Pharmacol 10: 140–145PubMedGoogle Scholar
  108. Mcllwain H (1942) Correlation of drug action in vitro and in vivo through specific antagonists: Sulfanilamide and p-aminobenzoate. Br J Exp Pathol 23: 265–271Google Scholar
  109. Mietzsch F (1938) The chemotherapy of bacterial infections. Chem Ber 71 A: 15–28Google Scholar
  110. Mietzsch F, Klarer J (1935) Verfahren zur Herstellung von Azoverbindungen. Deutsches Reichspatent 607: 537Google Scholar
  111. Miller AK (1944) Folic acid and biotin synthesis by sulphonamide-sensitive and sulphonamide-resistant strains of E. coli. Proc Soc Exp Biol Med 57: 151–153Google Scholar
  112. Miller AK, Bruno P, Berglund RM (1947) The effect of sulfathiazole on the in vitro synthesis of certain vitamins by E. coli. J Bacteriol 54: 9PubMedGoogle Scholar
  113. Miller GH, Doukas PH, Seydel JK (1972) Sulfonamide structure-activity relationship in a cell-free system. Correlation of inhibition of folate synthesis with antibacterial activity and physicochemical parameters. J Med Chem 15: 700–706PubMedCrossRefGoogle Scholar
  114. Mitchell HK, Snell EE, Williams RJ (1941) The concentration of folic acid. J Am Chem Soc 63: 22–84CrossRefGoogle Scholar
  115. Mitsuda H, Suzuki Y (1968) Pteridines in plants. III. Biogenesis of folic acid in green leaves; inhibitors acting on the biosynthetic pathway for the formation of dihydropteroic acid from guanylic acid. J Vitaminol (Kyoto) 14: 106–120Google Scholar
  116. Mitsuhashi S, Inoue K, Inoue M (1977) Nonconjugative plasmids encoding sulfanilamide resistance. Antimicrob Agents Chemother 12: 418–422PubMedGoogle Scholar
  117. Morgan HR (1948) Studies on the relationship of pteroylglutamic acid to the growth of Psittacosisvirus (strain 6 BC). J Exp Med 88: 285–294PubMedCrossRefGoogle Scholar
  118. Moriguchi I, Wada S (1968) Protein bindings. IV. Relations of an index for electronic structure to binding constant with serum albumin and bacteriostatic activities of sulfonamides. Chem Pharm Bull (Tokyo) 16: 734–738Google Scholar
  119. Moriguchi I, Wada S, Nishizawa T (1968) Protein bindings. III. Binding of sulfonamides to bovine serum albumin. Chem Pharm Bull (Tokyo) 16: 601–605Google Scholar
  120. Morrison NE (1968) Sulfone resistant states (Abstr 199). Int J Lepr 36: 652Google Scholar
  121. Moulder JW (1962) The biochemistry of intracellular parasitism. University of Chicago Press, Chicago, p 105Google Scholar
  122. Nagate N, Matsuhisa I, Inoue K, Mitsuhashi S (1978) Plasmid-mediated sulfanilamide resistance. Microbiol Immunol 22: 367–375PubMedGoogle Scholar
  123. Nichol CA, Anton AH, Zakrzewski SF (1955) A labile precursor of citrovorum factor. Science 121: 275–279PubMedCrossRefGoogle Scholar
  124. Nichols RL, Jones WF Jr, Finland M (1956) Sulfamethoxypyridazine: preliminary observations on absorption and excretion of a new long-acting antibacterial sulfonamide. Proc Soc Exp Biol Med 92: 637–640PubMedGoogle Scholar
  125. Nimmo-Smith RH, Lascelles J, Woods DD (1948) Synthesis of folic acid by Streptobac- terium plantarumand its inhibition by sulfonamides. Br J Exp Pathol 29: 264–281PubMedGoogle Scholar
  126. Nogami H, Hasegawa A, Hanano M, Imaoka K (1968) Absorption and excretion of drugs. XII. Pharmacokinetic studies on urinary excretion of sulfonamides. Yakugaku Zashi 88: 893–899Google Scholar
  127. Okinaka O, Iwai K (1969) Radioassay for dihydropteroate synthesizing enzyme activity. Anal Biochem 31: 174–182PubMedCrossRefGoogle Scholar
  128. Ortiz PJ (1970) Dihydrofolate and dihydropteroate synthesis by partially purified enzymes from wild-type and sulfonamide-resistant pneumococci. Biochemistry 9:355–361PubMedCrossRefGoogle Scholar
  129. Osborn MJ, Huennekens FM (1958) Enzymatic reduction of dihydrofolic acid. J Biol Chem 233: 969–974PubMedGoogle Scholar
  130. Pato ML, Brown GM (1963) Mechanisms of resistance of E. colito sulfonamides. Arch Biochem Biophys 103: 443–448PubMedCrossRefGoogle Scholar
  131. Pearson JMH, Petit JMS, Rees RJW (1968) Studies on sulfone resistance in leprosy. 3. A case of partial resistance. Int J Lepr 36: 171–178Google Scholar
  132. Peters W (1974) Recent advances in antimalarial chemotherapy and drug resistance. Adv Parasitol 12: 69–114PubMedCrossRefGoogle Scholar
  133. Pfiffner JJ, Binkley SB, Bloom ES, Brown RA, Bird OD, Emmett AD, Hogan AG, O’Dell BL (1943) Isolation of the antianemia factor (vit Bc) in crystalline form from liver. Science 97: 404–405PubMedCrossRefGoogle Scholar
  134. Pfiffner JJ, Binkley SB, Bloom ES, O’Dell BL (1947) Isolation and characterisation of vit Bc from liver and yeast. Occurrence of an acid-labile chick antianaemia factor in liver. J Am Chem Soc 69: 1476–1487PubMedCrossRefGoogle Scholar
  135. Ramakrishnan SP, Basu PC, Singh H, Singh N (1962) Studies on the toxicity and action of diaminodiphenylsulfone (DDS) in avian and simian malaria. Bull WHO 27: 213–221PubMedGoogle Scholar
  136. Ramakrishnan SP, Basu PC, Singh N, Wattal BL (1963) A study on the joint action of diaminodiphenylsulfone (DDS) and pyrimethamine in the sporogony cycle of plasmodium gallinaceum. Potentiation of the sporontocidal activity of pyrimethamine by DDS. Indian J Malariol 17: 141–148PubMedGoogle Scholar
  137. Rastelli A, De Beneditti PG, Battistuzzi GA, Albasini A (1975) The role of anionic, imidic and amidic forms in structure-activity relationships. Correlation of electronic indices and bacteriostatic activity in sulfonamides. J Med Chem 18: 963–967PubMedCrossRefGoogle Scholar
  138. Ratner S, Blanchard M, Coburn AF, Green DE (1944) Isolation of a peptide of p-aminobenzoic acid from yeast. J Biol Chem 155: 689–690Google Scholar
  139. Reber H, Rutishauser G, Tholen H (1964) Untersuchungen am Menschen mit Sulfamethoxazol und Sulforthodimothoxin. In: Kuemmerle HP, Preziosi (eds) Third Int Congr Chemother Stuttgart 1963, vol 1. Thieme, Stuttgart, p 648Google Scholar
  140. Reynolds JJ, Brown GM (1964) The biosynthesis of folic acid. IV. Enzymatic synthesis of dihydrofolic acid from guanine and ribose compounds. J Biol Chem 239: 317–325PubMedGoogle Scholar
  141. Richey DP, Brown GM (1969) The biosynthesis of folic acid IX Purification and properties of the enzymes required for the formation of dihydropteroic acid. J Biol Chem 244: 1582–1592PubMedGoogle Scholar
  142. Rieder J (1963) Physikalisch-chemische und biologische Untersuchungen an Sulfonamiden. Arzneim Forsch 13:81–88,89–95, 95–103Google Scholar
  143. Rist N, Bloch F, Hamon V (1940) Inhibiting action of sulfonamide and of a sulfone on the multiplication in vitro and in vivo of tubercle bacillus. Ann Inst Pasteur 64: 203–237Google Scholar
  144. Robinowitz JC, Himes RH (1960) Folic acid coenzymes. Fed Proc 19: 963–970Google Scholar
  145. Roland S, Ferone R, Harvey RJ, Styles YL, Morrison RW (1979) The characteristics and significance of sulfonamides as substrates for E. colidihydropteroate synthase. J Biol Chem 254: 10337–10345PubMedGoogle Scholar
  146. Rubbo SD, Gillepsie JM (1940) p-Aminobenzoic acid as a bacterial growth factor. Nature 146:838–839Google Scholar
  147. Rubbo SD, Maxwell M, Fairbridge RA, Gillespie JM (1941) The bacteriology, growth factor requirements and fermentation reactions of Clostridium acctobutylicumWeizman. Aust J Exp Biol Med Sci 19: 185–198CrossRefGoogle Scholar
  148. Sabin AB, Warren J (1941) Therapeutic effect of the sulfonamides on infection by an intracellular protozoan (Toxoplasma). J Bacteriol 41: 80Google Scholar
  149. Sauberlich HE, Baumann CA (1948) A factor required for the growth of Leuconostoc citrovorum. J Biol Chem 176: 165–173PubMedGoogle Scholar
  150. Schmelkes FC, Wyss O, Marks HC, Ludwig BJ, Stranskov FB (1942) Mechanism of sulfonamide action. I. Acidic dissociation and antibacterial effect. Proc Soc Ex Biol Med 50: 145–148Google Scholar
  151. Schnaare RS, Martin AN (1965) Quantum chemistry in drug design. J Pharm Sci 54: 1707–1713CrossRefGoogle Scholar
  152. Scholtan W (1963) The protein binding of long acting sulfonamides. Chemotherapia 6: 180–189PubMedCrossRefGoogle Scholar
  153. Scholtan W (1968) Die hydrophobe Bindung der Pharmaka an Human-Albumin und Ribonucleinsäure. Arzneim Forsch 18: 505–517Google Scholar
  154. Schwenker G (1962) Infrared and nuclear magnetic resonance spectrophotometric study of the structure of sulfanil-guanidine. Arch Pharm (Weinheim) 295: 753–758CrossRefGoogle Scholar
  155. Seeler AO, Graessle O, Dusenbery ED (1943) The effect of pAB on the chemotherapeutic activity of sulfonamides in Lymphogranuloma venereumand in duck malaria. J Bacteriol 45: 205–209PubMedGoogle Scholar
  156. Selbie FR (1940) The inhibition of the action of sulfanilamide in mice by p-aminobenzoic acid. Br J Exp Pathol 21: 90–93Google Scholar
  157. Seydel JK (1966) Prediction of in vitro activity of sulfonamides, using Hammett constants or spectrophotometric data of the basic amines for calculation. Mol Pharmacol 2: 259–265PubMedGoogle Scholar
  158. Seydel JK (1968) Molecular basis for the action of chemotherapeutic drugs: structure-activity studies on sulfonamides. In: Ariens EJ (ed) Physico-chemical aspects of drug action. Pergamon, New York, p 169Google Scholar
  159. Seydel JK (1971a) Prediction of the in vitro activity of sulfonamides synthesised from simple amines by use of electronic data obtained from simple amines. J Med Chem 14: 724–729CrossRefGoogle Scholar
  160. Seydel JK (1971b) Physicochemical approaches to the rational development of new drugs. In: Ariens EJ (ed) Drug design. Academic Press, New York, p 343Google Scholar
  161. Seydel JK, Wempe E (1964) Physikalisch-chemische und bakteriologische Untersuchungen an N’-acylierten Sulfamiden. Arzneim Forsch 14: 705–708Google Scholar
  162. Seydel JK, Krüger-Thiemer E, Wempe E (1960) Relation between antibacterial activity and IR of sulfanilamide. Z Naturforsch [C] 15 B: 628–641Google Scholar
  163. Shepard CC, Tolentino JG, McRae DN (1968) The therapeutic effect of 4,4’-diacetyldi-aminodiphenylsulfone (DADDS) in leprosy. Am J Trop Med Hyg 17: 192–201PubMedGoogle Scholar
  164. Shiota T (1959) Enzymic synthesis of folic acid-like compounds by cell-free extracts of Lactobacillus arabinosus. Arch Biochem Biophys 80: 155–161CrossRefGoogle Scholar
  165. Shiota T, Disraely MN (1961) The enzymic synthesis of dihydrofolate from 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine and p-aminobenzoylglutamate by extracts of Lactobacillus plantarum. Biochim Biophys Acta 52: 467–473PubMedCrossRefGoogle Scholar
  166. Shiota T, Disraely MN, McCann MP (1964) The enzymatic synthesis of folate-like compounds from hydroxymethyldihydropteridine pyrophosphate. J Biol Chem 239: 2259–2266PubMedGoogle Scholar
  167. Shiota T, Baugh CM, Jackson R, Dillard R (1969) The enzymatic synthesis of hydroxymethyl-dihydrofolate. Biochemistry 8: 5022–5028PubMedCrossRefGoogle Scholar
  168. Shive W, Ackerman WC, Gordon M, Getzendaner ME, Eakin RE (1947) 5(4)-Amino-4(5)-imidazolecarboxamide, a precursor of purines. J Am Chem Soc 69:725–726PubMedCrossRefGoogle Scholar
  169. Sköld O (1976) R-Factor-mediated resistance to sulfonamides by a plasmid-borne drug resistance dihydropteroate synthase. Antimicrob Agents Chemother 9: 49–54PubMedGoogle Scholar
  170. Snell EE, Mitchell HK (1943) Some sulfonamide antagonists as growth factors for lactic acid bacteria. Arch Biochem 1: 93–101Google Scholar
  171. Snell EE, Peterson WH (1940) Growth factors for bacteria. X. Additional factors required by certain lactic acid bacteria. J Bact 39: 273–284PubMedGoogle Scholar
  172. Stamp TC (1939) Bacteriostatic action of sulphanilamide in vitro. Lancet II: 10–17CrossRefGoogle Scholar
  173. Stetten MR, Fox CL (1945) An amine formed by bacteria during sulphonamide bacteriostasis. J Biol Chem 161: 333–349PubMedGoogle Scholar
  174. Strauss AM, Kliggman AM, Pillsbury DM (1951) The chemotherapy of actinomycosis and nocardiosis. Am Rev Tuberc Pulm Dis 63: 441–448Google Scholar
  175. Struller T (1968) Progress in sulfonamide research. Prog Drug Res 12: 389–457PubMedGoogle Scholar
  176. Tabor H, Wyngaarden L (1954) The enzymatic formation of formimino-tetrahydrofolic acid, 5,10-methylenetetrahydrofolic acid and 10-formyltetrahydrofolic acid in the metabolism of formimino-glutamic acid. J Biol Chem 234: 1830–1846Google Scholar
  177. Tarizzo ML (1972) Chemotherapy of trachoma. WHO Chronicle 26: 99–101PubMedGoogle Scholar
  178. Thompson PE (1967) Antimalarial studies on 4,4’-diaminodiphenyl sulfone (DDS) and repository sulfones in experimental animals. Int J Lepr 35: 605–615Google Scholar
  179. Thompson PE, Olszewski B, Waitz JA (1965) Laboratory studies on the repository antimalarial activity of 4,4’-diacetyl-aminodiphenylsulfone, alone and mixed with cycloguanil pamoate (CI-501). Am J Trop Med Hyg 14: 343–353PubMedGoogle Scholar
  180. Toth-Martinez RJ, Papp S, Dinya Z, Hernadi FJ (1975) New vistas for p-aminobenzoate participation in the biosynthesis of dihydrofolate: a tentative model of the tetrahydrofolate multienzyme complex. Biosystems 7: 172–182PubMedCrossRefGoogle Scholar
  181. Trefouël J, Trefouël MMe J, Nitti F, Bovet D (1935) Activite du p-aminophenylsulfamide sur les infections streptococciques experimentales de la souris et du lapin. C R Soc Biol 120: 756–758Google Scholar
  182. Tripod J, Neipp L, Padowtz W, Sackmann W (1960) Relations experimentales entre l’action curative et les taux sanguins de sulfamides, en particulier du sulfaphenazol. Antibiot Chemotherapia 8: 17–31Google Scholar
  183. Tschesche R (1947) A new explanation of the mode of action of the sulfonamides. Z Naturforsch [C] 2b: 10–11Google Scholar
  184. Vieira E, Shaw E (1961) The utilisation of purines in the biosynthesis of folic acid. J Biol Chem 236: 2507–2510PubMedGoogle Scholar
  185. Walter RD, Königk E (1974) Biosynthesis of folic acid compounds in plasmodia; purification and properties of 7,8-dihydropteroate synthesising enzyme from Plasmodium chabaudi. Hoppe Seylers Z Physiol Chem 355: 431–437PubMedCrossRefGoogle Scholar
  186. Watanabe T (1963) Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev 27: 87–115PubMedGoogle Scholar
  187. Weinstein L, Madoff MA, Samet CM (1960) The sulfonamides. Engl J Med 263:793–800, 842–849, 900–907Google Scholar
  188. Weisman RA, Brown GM (1964) The biosynthesis of folic acid. V. Characteristics of the enzyme system that catalyses the synthesis of dihydropteroic acid. J Biol Chem 239: 326–331PubMedGoogle Scholar
  189. White PJ, Woods DD (1965) The synthesis ofp-aminobenzoic acid and folic acid by staphylococci sensitive and resistant to sulphonamides. J Gen Microbiol 40: 243–253PubMedGoogle Scholar
  190. Williams RT, Parke DV (1964) Metabolic fate of drugs. Ann Rev Pharmacol 4: 85–114CrossRefGoogle Scholar
  191. Wise EM Jr, Abou-Donia MM (1975) Sulfonamide resistance mechanism in E. coli: R plasmids can determine sulfonamide-resistant dihydropteroate syntheses. Proc Natl Acad Sci USA 72: 2621–2625Google Scholar
  192. Wolf B, Hotchkiss RD (1963) Genetically modified folic acid synthesising enzymes of pneumococcus. Biochemistry 2: 145–150PubMedCrossRefGoogle Scholar
  193. Woods DD (1940) Relation of p-aminobenzoic acid to mechanism of action of sulphanilamide. Br J Exp Pathol 21: 74–90Google Scholar
  194. Woods DD (1954) Metabolic relations between p-aminobenzoic and folic acids in microorganisms. In: Chemistry and biology of pteridines, CIBA Foundation Symposium. Little Brown, Boston, Mass, p 220Google Scholar
  195. Yamazaki M, Aoki M, Kamada A (1968) Biological activities of drugs. III. Physicochemical factors affecting the excretion of sulfonamides in rabbits. Chem Pharm Bull (Tokyo) 16: 707–714Google Scholar
  196. Yamazaki M, Kakeya N, Morishita T, Kamada A, Aoki A (1970) Biological activity of drugs. X. Relation of structure to the bacteriostatic activity of sulfonamides (1). Chem Pharm Bull (Tokyo) 18: 702–707Google Scholar
  197. Ziegler-Gunder I, Simon H, Wacker A (1956) Metabolism of guanine-2–14C and hypoxanthine-8–14C in amphibians. Zentral Naturforsch IIb: 82–85Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • N. Anand

There are no affiliations available

Personalised recommendations